Bonding, Structure und Function of Molecular Adsorbate Layers at Solid Surfaces

Stefan Tautz International University Bremen

Regensburg, 13.10. 2006

Organic Electronics

molecular wire

Fraunhofer Institut Dresden and UDC

Interfaces in OFETs are responsible for functionality:

- charge carrier injection at the contacts
- film growth starts at surface of insuator
- charge carrier transport at the interface organic layer / insulator (traps for electrons and holes)

Motivation

The Problem of Contacts in Molecular Electronics

"In such junctions, the **connection** between the **molecule** and the **electrode** greatly affects the current-voltage characteristics." *A. Nitzan & M. A. Ratner, Science 300, 1384 (2003)*

"A major unsolved problem … is that there are currently **no robust methods** to image and determine the **precise adsorption site** and **conformation** of the molecule on this length scale..... At the current stage of experimental uncertainty, one expects to see **fluctuations** from measurement to measurement or even within the same test system over time. "

C. Joachim & M. A. Ratner, PNAS 102, 8800 (2005)

Strategy and Work Programme

Strategy: Use highly ordered interfaces between relevant materials

Work programme:

Under which conditions do highly ordered layers form?

Compehensive characterisation of highly ordered layers (with their functions in mind)

Combination of interface physics and chemistry with organic / molecular electronics

Experimental Methods

STM / STS:	Scanning tunnelling microscopy / spectroscopy
XPS/UPS:	Photoelectronen spectroscopy
NEXAFS:	X-ray absorption spectroscopy
NIXSW:	X-ray standing waves
HREELS / EELS:	Electron energy loss spectroscopy
LEED:	Low energy electron diffraction
PL:	Photoluminescence spectroscopy
Raman:	Raman spectroscopy

STM

DH4T – Dihexyl-Quaterthiophene / Ag(111)

ATOMIC / MOLECULAR MANIPULATION

Low Temperature Scanning Tunneling Microscope

Soubatch, Temirov, FST, Langmuir in press (2006)

16 eV

STM

STM

Experimental Methods

X-Ray Standing Waves (NIXSW)

Experimental Methods

X-Ray Standing Waves (NIXSW)

Atomic scale ruler (~0.05 Å)

Inelastic Electron Scattering (HREELS)

FST et al. Physical Review B 61, 16933 (2000)

Inelastic Electron Scattering (HREELS)

FST et al. Physical Review B 61, 16933 (2000)

Inelastic Electron Scattering (HREELS)

Substrate Bonding of Organic Molecules

Chemisorption PTCDA / Ag(111)

Substrate Bonding / Structure

PTCDA/Ag(111) Interface Structure

Substrate Bonding / Structure

PTCDA/Ag(111) Interface Structure

Lowest Unoccupied Molecular Orbital

PTCDA / Ag(111): commensurate, chemisorbed monolayer

Superstructure matrix:

slightly compressed as compared to bulk structure

Kraft, FST et al. Physical Review B 74, 041402(R) (2006)

PTCDA/Ag(111) Interface Structure

Lowest Unoccupied Molecular Orbital

PTCDA / Ag(111): commensurate, chemisorbed monolayer

Superstructure matrix:

slightly compressed as compared to bulk structure Adsorption site: bridge site

Kraft, FST et al. Physical Review B 74, 041402(R) (2006)

Electronic Structure: Newns-Anderson Model

The ability of a metal surface to bind an electron accepting molecule is directly related to its ability to stabilise the molecular affinity level below the Fermi-level.

Structure and Dynamic Properties

M. Böhringer et al., Surf. Sci. 419 (1998) L95–L99

3.0nA, -0.36V

6.6nA, -1.5V, 94Å×72Å

Structure and Dynamic Properties

M. Böhringer et al., Surf. Sci. 419 (1998) L95–L99

3.0nA, -0.36V

6.6nA, -1.5V, 94Å×72Å

Structure and Dynamic Properties

Dynamic Charge Transfer: Line Shape Analysis

electro-phonon-coupling: $V = 140 \pm 30 \text{ meV}$

Substrate Bonding / Dynamic Properties

Analysis of Molecular Dynamics : Bonding in the Centre

Analysis of Molecular Dynamics : Bonding in the Centre

Does the Bonding lead to a Molecular Distortion ?

Substrate Bonding / Bond Length & Molecular Configuration

"Atomic Scale Ruler": NIXSW

Result: Bond Length and Molecular Structure

Result: Bonding Mechanism

Physical Review Letters 94, 036106 (2005) Physical Review Letters 95, 209602 (2005)

Summary: Density Functional Calculation

Physical Review Letters 94, 036106 (2005) Physical Review Letters 95, 209602 (2005)

Theorie:

DFT-GGA (SIESTA) Standard double zeta basis with polarisation (DZP) for Ag and H, Triple zeta basis for O and C

Bond length	×
Adsorption site	\checkmark
Distortion of the molecule	\checkmark
Metallicity of the molecule	\checkmark
STM image contrast	\checkmark
Site-specific electronic structure	\checkmark

Electronic Structure: Hybridisation

L1 = former HOMO (sharp) L2 = former LUMO (broad)

Electronic Structure: Site-specific

Substrate Bonding / Detailed Electronic Structure

Electronic Structure: Site-specific

Kraft, FST et al. Physical Review B 74, 041402(R) (2006)

Due to distortion of **unit cell** from orthogonality, hydrogen bridges A-A and B-B are different from each other, as are A-B and B-A

<mark>A-A</mark>	2.36Å
B-B	2.55Å
A-B	2.15Å
B-A	2.04Å

distance

O-H

For a free-standing herringbone layer, different O-H bonds lead to: E_{HOMO}(A)=E_{HOMO}(B) + 120 meV

The metal overcompensates this shift to E_{HOMO}(A)=E_{HOMO}(B) - 100 meV

Experiment: E_{HOMO}(A)=E_{HOMO}(B) + 40 meV

Electronic Structure: Continuum?

Study small islands!

Electronic Structure: PTCDA/Ag(111) interface state

Confinement of free-electron-like PTCDA/Ag(111) interface state

Temirov, FST et al. Nature in press (2006)

Parabolic dispersion with m*=0.47 similar to Ag surface state (m*=0.42)

Electronic Structure: PTCDA/Ag(111) interface state

At k=0, the delocalised state is concentrated on the molecules

The delocalised state depends very sensitively on molecular coordination

Temirov, FST et al. Nature in press (2006)

Electronic Structure: Summary

Temirov, FST et al. Nature in press (2006)

Summary: Substrate Bonding

- a. Chemisorption
- b. Interface structure
- c. Dynamic charge transfer: bonding centre
- d. Interfacial electronen-phononen-coupling
- e. Bond length and molecular configuration
- f. Detailed electronic structure

Comprehensive characterisation of a model system

Molecules without Additional Functional Groups

Structures and Ordering Processes

a. <u>Structures:</u> Ordered molecular layers on a disordered interface layer: Pentacene / Ag(111)

Ordering on a Disordered Monolayer

growth direction

Pn / Ag(111) @ 300 K: Two Phases of Growth

Decrease of the sticking coefficient

Pn / Ag(111) @ RT: Order on a Disordered Contact Layer

Pn / Ag(111) @ RT: Order on a Disordered Contact Layer

Eremtchenko, FST, et al. Physical Review B 72, 115430 (2005)

Luminescence Properties at Interfaces

metal molecule

PL is quenched

Luminescence Properties at Interfaces

Luminescence is quenched for Tetracene on $AIO_x/Ni_3AI(111)$ at 80 K deposition, luminescence reappears after annealing of the film.

M. Schneider at al., J. Luminescence 110 (2004) 275

Do molecular orientation and film morphology influence the luminescence behaviour?

AIO_x / Ni₃AI(111): Luminescence and Film Morphology

Functions of Molecular Adsorbate Layers

a. Luminescence properties at interfaces

b. Transport through molecules

Transport through Molecules

Challenge: measuring conductance of single molecules

Inelastic Tunnelling Spectroscopy (IETS)

Inelastic Tunnelling Spectroscopy (IETS)

Summary: Bonding – Structure – Functions

well-defined model systems

Summary: Bonding – Structure – Functions

Summary: Bonding – Structure – Functions

Summary: Bonding – Structure – Functions

Acknowledgments

Collabrators:

S. Sloboshanin, M. Eremtchenko, D. Bauer, R. Temirov, A. Kraft, S. Jönsson, S. Soubatch, M. Weinhold, T. Balster, B. Xu, C. Doose

Co-operating groups :

J. A. Schäfer – Ilmenau A. Hauschild, A. Langner, M. Sokolowski – Bonn V. Shklover, C. Kumpf, A. Schöll, E. Umbach – Würzburg B. Doyle, M. Peddio, S. Nannarone – TASC Triest L. Casalis, G. Scoles – Elettra Triest B.C.C. Cowie, T.L. Lin, J. Zegenhagen – ESRF Grenoble

DFG- Schwerpunkt:

C. Wöll, F. Schreiber,

Colleagues in Bremen:

A. Materny, M. Rohlfing, V. Wagner,

Financial Support: DFG, TMWK, Wenner-Gren Stiftung, ESRF, Elettra, IUB