

rtuelles Institut

European Commision

Research Training Networks Spintronics

Magnetic-field Funktionale Molekülsysteme für die Informationstechnologie Kondo-spectroscopy of single molecule magnets

<u>Maarten Wegewijs</u> **Christian Romeike Herbert Schoeller** Walter Hofstetter*

Institute for theoretical physics A RNTHAACHEN *Institute for theoretical physics, Frankfurt

Phys. Rev. Lett. 96, 196601 (2006) **Zero-field**: cond-mat/0605514. **Magnetic field:**

- Single molecule magnets (SMM)
 - Magnetic anisotropy:

barrier + spin-tunneling (QTM)

- QTM-induced Kondo effect
 - "Weak" Kondo effect
 - "Strong" Kondo effect

Magnetic field controlled Kondo effect

Kondo effect ~ mixing of magnetic states M induced by QTM controlled by magnetic field

Single molecule magnets (SMM)

Sessoli et. al. J. Am. Chem. Soc 115, 1804 (1993) Thomas et. al. Nature 383, 145 (1996) Friedman et al. Phys. Rev. Lett. 76, 3830 (1996)

- Big, finite spin S >> $1/2 \sim$ intramolecular exchange
- Magnetic anisotropy ~ intramolecular spin-orbit coupling
- Discrete magnetic symmetry ~ geometry of magn. core

Magnetic anisotropy

 $\begin{array}{lll} H_{MAB} & = & - D_N S_z^2 & \text{Magnetic anisotropy barrier} \\ H_{QTM} & = & - \frac{1}{2} B_2 (S_+^2 + S_-^2) & \text{Quantum tunneling of magnetization (QTM)} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$

 $D \sim 5.10^{-2} \text{ meV}$

S= 1/2 Kondo effect

Magnetic field

Numerical Renormalization Group (NRG)

S > 1/2 Kondo effect with anisotropy

Weak Kondo effect in SMMs

Phys. Rev. Lett. 96, 196601 (2006).

QTM modulates magnetic *state mixing*

Modifies exchange: *strength* & *anisotropy*

 $J^{x,y,z}(B_2/D)$

Parameters: *W*=1, *D*=0.005*W*, *J*=0.1*W*

Strong Kondo effect in SMMs

C. Romeike, M. Wegewijs, H. Schoeller, W. Hofstetter, cond-mat/0605514.

Excited state spin scattering

(S +1/2 Kramers doublets)

$$H_{\kappa} = \sum_{II'} \sum_{i=xyz} J_{II'}^{i} P_{II'}^{i} s^{i} + \sum_{I} E_{I} N_{II} + \sum_{k\sigma} \epsilon_{k} a_{k\sigma}^{\dagger} a_{k\sigma}$$

 $J_{II'}^{x,y} = J \langle +I | S_{+} \pm S_{-} | -I' \rangle \qquad J_{II'}^{z} = 2J \langle +I | S_{z} | +I' \rangle$

anticrossing many exchange couplings change

QTM induced anticrossings

Single spin-binding energy

Magnetic field induced anticrossings (without QTM) $H_{Zeeman} = H_z S_z$ M = +7/2*M*=+5/2 $E_{\prime+}$ Red / black = M = +3/2cross magnetic symmetry $E_{I_{-}}$ M = +1/2M = -1/2M = -3/2anticross *M*=-5/2 Magnetic anisotropy 2SD ~ 1 meV energy window H_z/D M = -7/22S-1 2 3 1

Magnetic field induced anticrossings

$$H_{ex} = \sum_{II'} \left(\sum_{i=x,y} J_{II'}^{i} P_{II'}^{i} S_{i} + \sum_{\sigma=\pm} J_{II'\sigma}^{z} |I\sigma\rangle \langle I'\sigma|S_{z} \right)$$

Transverse scattering with anticrossing states quenched at anticrossing

Anticrossing: 2 sign changes

Field induced/modulated Kondo effect

Relation integer / half-integer spin

Parameters: W=1, $D=5*10^{-5}W$, $B_2=0.1D$, J=0.15W

Entertainment break

Relation integer / half-integer spin

Magnetic field Kondo spectroscopy

- Magnetic parameters of SMM in electrical circuit
- Magnetic field energies < 2 D S ~ 1 meV no complete Zeeman splitting required
- Temperatures ~ T_K >> 2 D S ~ 1 meV no mK required
- Control J: tunneling distance (STM) or gate (3-terminal)
- 3-terminal transport:

"Weak" & "strong" Kondo ~ gate-tunable

Kondo in subsequent charge and spin states

