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Overview

Introduction
Bandstructure of single-walled nanotubes
Interaction effects: Luttinger liquid
Experimental evidence for Luttinger liquid

Magnetotransport in chiral interacting SWNTs
Asymmetric contribution in magnetic field out of equilibrium

Crossover from Luttinger liquid to Altshuler-
Aronov behavior in MWNTs
Crossed nanotube transport



Classification of carbon nanotubes

Single-wall nanotubes (SWNTs): 
One wrapped graphene sheet
Typical radius 1 nm, lengths up to several mm

Ropes of SWNTs: 
Triangular lattice of individual SWNTs (typically
up to a few 100)

Multi-wall nanotubes (MWNTs): 
Russian doll structure, several inner shells
Outermost shell radius about 5 nm



Electronic transport in nanotubes
Basically all known mesoscopic effects
appear in a single material system:

UCF, weak and strong localization, Aharanov-
Bohm physics
Strong-interaction effects (Luttinger liquid)
Kondo effect & quantum dot physics
Superconductivity (both intrinsic and proximity
induced)
Spin transport, spin FET
…



Wrapped 2D graphene sheet

Basis contains two atoms nmdda 14.0,3 ==

(n,m) indices: wrapping of 
sheet onto cylinder

Chiral angle θ: defined
with respect to zigzag
(n,0) tube



Nanotube as rolled graphene sheet

(n,m) nanotube specified
by superlattice vector
imposes transverse
momentum quantization
Chiral angle determined
by (n,m)
Important effect on 
electronic structure



Band structure: Graphene

Exactly two independent corner
points K, K´ in first Brillouin zone.
Band structure: valence and 
conduction bands touch at corner
points (E=0), these are the Fermi
points in graphene
Lowest-order k•p scheme:     
Dirac light cone dispersion
Deviations at higher energies: 
trigonal warping
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Periodic boundary conditions: SWNTs
Transverse momentum must be quantized

Nanotube metallic only if K point has allowed transverse
momentum
gives necessary condition:   2n+m = 3 x integer



Electronic structure

Band structure predicts three types:
Semiconductor if (2n+m)/3 not integer. Band gap:

Metal if n=m: Armchair nanotubes
Small-gap semiconductor otherwise (curvature-
induced gap)

Experimentally observed: STM map plus 
conductance measurement on same SWNT
In practice intrinsic doping, Fermi energy
typically 0.2 to 0.5 eV
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Metallic SWNTs
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Transverse momentum quantization: keep only

Individual SWNT represents ideal 1D quantum wire:
only N=2 spin-degenerate channels at Fermi level
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Conductance of ballistic SWNT

Two spin-degenerate transport bands
Landauer formula: For good contact to 
voltage reservoirs, conductance is

Experimentally (almost) reached recently
Ballistic transport is possible
What about interactions?
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Breakdown of Fermi liquid in 1D
Landau quasiparticles unstable in 1D 
because of electron-electron interactions
Reduced phase space
Stable excitations: Plasmons (collective
electron-hole pair modes)
Often: Luttinger liquid

Luttinger, JMP 1963; Haldane, J. Phys. C 1981

Physical realizations now emerging: 
Semiconductor wires, nanotubes, FQH edge
states, cold atoms, long chain molecules,…



Field theory: metallic SWNTs

Keep only two bands at Fermi energy:
Low-energy expansion of electron operator

1D fermion operators: Bosonization applies
allows for nonperturbative handling of Coulomb
interactions
predicts Luttinger liquid behavior
Simplest paradigm for non-Fermi liquid state
with fractionalized quasiparticle excitations

Egger & Gogolin, PRL 1997, EPJB 1998
Kane, Balents & Fisher, PRL 1997



Some Luttinger liquid basics
Gaussian field theory, exactly solvable
Plasmons: Bosonic displacement field
Without interactions: Harmonic chain problem

Bosonization identities
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Coulomb interaction
1D interaction potential externally screened by gate

Effectively short-ranged on large distance scales
Retain only q=0 Fourier component
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Luttinger interaction parameter
Dimensionless parameter
describes interaction strength
Density-density interaction from
(forward scattering) gives Luttinger liquid

Fast-density interactions (backscattering)
open only very tiny gaps.  Thermally smeared
in practice…
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Luttinger liquid properties I

Electron momentum
distribution function: 
Smeared Fermi surface
at zero temperature
Power law scaling

Similar power laws: 
Tunneling DoS, with
geometry-dependent
exponents
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TDoS of multi-band Luttinger liquid
Power-law suppressed TDoS reflects orthogonality
catastrophe: Electron splinters into true quasiparticles

Geometry dependence
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Matveev & Glazman, PRL 1993
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Luttinger liquid properties II

Electron fractionalizes into spinons and holons
(solitons of the Gaussian field theory)
Laughlin-type quasiparticles with fractional statistics
and fractional charge

Spin-charge separation: Additional electron decays
into decoupled spin and charge wave packets

Different velocities for charge and spin
Spatial separation of electronic spin and charge!
Could be probed in nanotubes by magnetotunneling, 
electron spin resonance, or spin transport



Bosonized SWNT Hamiltonian
Four bosonic fields, index
Low-energy theory: Luttinger liquid
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Conductance probes TDoS

Conductance across
kink:

Universal scaling of 
nonlinear conductance:
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Evidence for Luttinger liquid

Yao et al., Nature 1999

gives g around 0.22



Experimental evidence for Luttinger liquid 
in SWNTs

Tunneling density of states (many groups)
Resonant tunneling Postma et al., Science 2001

Transport in crossed geometry (no tunneling)   
Gao, Komnik, Egger, Glattli & Bachtold, PRL 2004

Photoemission spectra (spectral function) 
Ishii, Kataura et al., Nature 2003

STM probes of density pattern Lee et al. PRL 2004

Spin-charge separation & fractionalization so 
far not observed in nanotubes!



Beyond lowest-order k•p scheme?
Dirac cone approximation: chirality drops out 
To go beyond, one must include

Trigonal warping: anisotropic & nonlinear
dispersion relation
Transverse momentum quantization: in parallel 
magnetic field B, including tube curvature

Net effect: R/L movers
have different velocity

θδ 6sinB
vv
vv

LR

LR ∝
+
−

=

θ
π

3cos
4

2

R
aeBRk ±=⊥ =



Nonlinear current-voltage relation
Linear transport: Onsager-Casimir relation

Out of equilibrium: odd-in-B part allowed

this contribution is even in voltage!
Fundamentally interesting because nonzero effect
requires combined presence of

Electron-electron interactions
Chirality (handedness): broken inversion symmetry
Magnetic field: broken time reversal symmetry
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Sanchez & Büttiker, PRL 2004
Spivak & Zyuzin, PRL 2004



How to include in low energy theory?
Luttinger liquid theory now comes with
left/right plasmon velocities, but still exactly
solvable Gaussian theory

Consider long SWNT & good contacts
Effect requires (at least two) impurities
Here: 2 impurities separated by distance d
Nonequilibrium Keldysh approach
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Odd-in-B current in a chiral SWNT
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Analytical result

with dimensionless
temperature/voltage

Requires interactions (g<1) and chirality (sin6θ≠0)
odd in magnetic field B, even in bias voltage V

changes sign with handedness (enantioselective)

De Martino, Egger & Tsvelik, cond-mat/0605645



Available experimental results
Measured:

for individual SWNT (with
several impurities)
Oscillatory dependence
on gate voltage; 
corresponds to 
factor
increases when
lowering temperature
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Theoretical result for α(T)

Power-law scaling at low
temperature
Exponentially small at 
high temperature
Order of magnitude as in 
experimental data
Does not change sign as 
function of temperature 1 10 100
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Prediction: Oscillations in Ie(V)  
Zero temperature limit:

predicts oscillations as function of V with periods:

Low-voltage limit: Power-law scaling
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To be observed experimentally…
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What about MWNTs? 

Electronic transport in MWNTs usually in 
outermost shell only
Energy scales one order smaller
Typically bands due to doping
Inner shells can also create disorder

Experiments indicate mean free path
Also relevant for long SWNTs

R>A

10≈N

White & Todorov, Nature 1998
Wang & Grifoni, PRL 2005



Experiment: TDoS of MWNT

TDoS observed from
conductance through
tunnel contact
Power law zero-bias
anomalies
Scaling properties
similar to a Luttinger
liquid, but: exponent
larger than expected
from Luttinger theory

Bachtold et al., PRL 2001
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Tunneling DoS of MWNTs: experiment
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Geometry
dependence

Luttinger exponent much smaller!
Role of disorder?



Interplay of disorder and interaction

Coulomb interaction enhanced by disorder
Expected: crossover from quasiballistic
Luttinger liquid at           to diffusive/localized
phase (e.g. Altshuler-Aronov diffusive
anomalies) at 
Field theory for multi-channel case and 
arbitrary disorder strength:

Interacting Nonlinear σ Model

1>ωτ

Mora, Egger & Altland, cond-mat/0602411

1<ωτ

Earlier versions:
Finkel‘stein, Z. Phys. B 1983
Kamenev & Andreev, PRB 1999



Friedel oscillation

Mechanism unifying Luttinger liquid and Altshuler-
Aronov corrections: 

Barrier (impurity) generates Friedel oscillation
Incoming electron is also backscattered by Hartree-Fock
potential of Friedel oscillation
Energy dependence linked to Friedel oscillation
asymptotics: very slow decay, 

Quantitative treatment of disorder difficult using this picture. 
Better suited: Nonlinear sigma model

Matveev, Yue & Glazman, PRL 1993

gxx −∝)(δρ
Egger & Grabert, PRL 1995



Bulk TDoS
Analytical result for available
Can be recast in terms of standard P(E)
Coulomb blockade theory
(microscopic derivation)
Zero temperature: describes crossover from

Luttinger power law
to pseudogap at low energy:
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Bulk TDoS at T=0
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Stronger suppression of TDoS due to disorder. 
But does not really explain experimental results…



Interaction correction to conductivity
Complete crossover solution from ballistic to 
diffusive case, to lowest order in interaction:

( ) ( )

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Ω+Ω+
+−Ω+×

Ω

⎥
⎦

⎤
⎢
⎣

⎡ Ω
Ω∂

Ω−+=

−

∞ Ω

∫

'/)1('2
1'/1

2
coth

'ln1

2

2/1

0

ττ
τ

γτγ
σ
σ

ig
ii

Tk
dTT B

Drude

=

Ng /)1(2 −=γ

1
1

' +∝ γττ

Exponent for weak backscattering
by single impurity in a Luttinger liquid

Renormalized mean free time



Conductivity
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Crossed tubes: Theory vs. experiment

IA

(a) (b) VB1

VB2

VA
IB

I =0tube-tube

A2

B1

B2

A1

Weakly coupled crossed nanotubes
Single-electron tunneling between tubes irrelevant
Electrostatic coupling relevant for strong interactions

Without tunneling: Local Coulomb drag

Komnik & Egger, PRL 1998, EPJB 2001
Gao, Komnik, Egger, Glattli, Bachtold, PRL 2004



Characterization: Tunneling DoS

Tunneling conductance
through crossing: 
Power law, consistent
with Luttinger liquid
Quantitative fit gives
g=0.16
Evidence for Luttinger
liquid beyond TDoS?
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Dependence on transverse current

Experimental data
show suppression of 
zero-bias anomaly
when current flows
through transverse tube
Coulomb blockade or
heating mechanisms
can be ruled out
Prediction of Luttinger
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Hamiltonian for crossed tubes

Without tunneling:  Electrostatic coupling and 
crossing-induced backscattering

Density operator:
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Renormalization group equations

Lowest-order RG equations:

Solution:

Here: inter-tube coupling most relevant!
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Low-energy solution
Keeping only inter-tube coupling, problem is
exactly solvable by switching to symmetric/ 
antisymmetric (±) boson fields in c+ sector 
For g=3/16=0.1875, particularly simple:

( )

2

22
1Im2

2
4

/

2

/

BA

B

BB
BB

BABA

VVV

Tk
UVieTkTkeU

UUV
h
eI

±
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
+Ψ=

⎥⎦

⎤
⎢⎣

⎡ ±
−=

±

±±
±

−+

π



Comparison to experimental data
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Coulomb drag shot noise

Shot noise at T=0 gives important information
beyond conductance

For two-terminal setup & one weak impurity: 
DC shot noise carries no information about
fractional charge

Crossed nanotubes: For
must be due to cross voltage (drag noise)
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Shot noise transmitted to other tube 

Mapping to decoupled two-terminal problems
in ± channels implies

Consequence: Perfect shot noise locking

Noise in tube A due to cross voltage is exactly
equal to noise in tube B
Requires strong interactions, g<1/2
Effect survives thermal fluctuations
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Conclusions & Outlook

Nanotubes provide tailor-made laboratory for
mesoscopic transport with strong interactions, e.g.

Luttinger liquid physics
Magnetochiral transport: Asymmetric in B terms
Disorder-interaction interplay
Local Coulomb drag in crossed SWNTs

Some currently pursued topics
Interplay nanotube-graphene
Spin transport (no spin orbit, no hyperfine contributions)
Quantum dot physics (with superconducting and/or
ferromagnetic contacts):  Spin transistor, Josephon current
Intrinsic superconductivity in suspended ropes or MWNTs


