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Motivation

Quantum computing with spin qubits

single and double qubit operations

D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120, (1998).

H(t) =pus9 Z Bi(t).Si +J12(1)S1.S2
—_—

i=1,2 double qubit op.

singlequbit op.
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Motivation

Experiment
Elzermann et al, Nature 430, 431 (2004)

@ single electron in single dot

@ inplane magnetic field 10°
o
@ scheme (energy resolved g
tunneling): g 10 3
1. empty 2. fill&wait 3. read § .
-9103? 2
£ ]
. "
I\ - 10°] 5 a0 15 20
magnetic field B”[T]
S~ |
QPC 7N
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Motivation

Existing works

mainly in single dots — analytical solution for electron in a
parabolic potential

spin relaxation in single dots

A. V. Khaetskii and Y. V. Nazarov, Phys. Rev. B 64, 125316 (2001)

I. Aleiner and V. |. Falko, Phys. Rev. Lett. 87, 256801 (2001)

V. I. Falko, B. L. Altshuler and O. Tsyplyatev, Phys. Rev. Lett. 95, 76603 (2005)
D. V. Bulaev and D. Loss, Phys. Rev. B 71, 205324 (2005)

M. Florescu and P. Hawrylak, Phys. Rev. B 73, 45304 (2006)

our work on double dots
P. Stano and J. Fabian, Phys. Rev. B 72, 155410 (2005)
P. Stano and J. Fabian, Phys. Rev. Lett. 96, 186602 (2006)

P. Stano and J. Fabian, cond-mat/0604633, Phys. Rev. B in press (2006)

Spin relaxation in



Electron
Phonons
Relaxation rates

Electron Hamiltonian

effective mass and 2D approximation

B confinement p 2 g
21 lateral (30 nm) H=—+4+Vc+ ZugB.oc 4+ Hg
B. - 2m 2

CmD\q@ Joam Vg = R min{(r — d), (r + d)?}

4
Vixy) 2mly

/- Potential spin-orbit Hamiltonian

Hso = Hpr + Hg
~—~ ~—~
Bychkov—Rashba  Dresselhaus

>
Interdot distance: 0-80 nm

Peter Stano Spin relaxation in QD



Model Electron
Phonons
Relaxation rates

Spin-orbit interations
Bychkov-Rashba term

GaAs

p—AlGaAs analogy of the relativistic correction —

spin moving in electric field sees a
magnetic field B = Sv x E
energy of the spin in this field is

+

E— —MBU.B:—%U.VXE:—%E.UXp

h
Her = m(axpy—aypx)

strength « electric
field E (asymetry
of the QW)
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Model Electron
Phonons
Relaxation rates

Spin-orbit interations

Dresselhaus terms for [001] growing direction
correcton in k.p to a single conduction band

7

strength

description

E
/CB HBL:J’!k: %[prx(pi—p§)+c.p.+h.c.]

HH by quantum averaging p? — (p2) one gets

7

§H m(—Uxpx—I—pry)—l—?c(axpxp)%—aypyp£+h,c,)

SO

k

XX

thickness of QW

V
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Electron
Phonons
Relaxation rates

Symmetry Cy,

spatial symmetry classes of the potential

intse(r)dot di stancel[%]

@ symmetry operations: Iy(x — —X), ly(y — —y), | = Ily
@ inplane (or no) field — 1, x,xy,y

@ perpendicular field — S (1,xy) and A (x,Y)

@ spin-orbit terms — spatial symmetry x and y
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Electron
Phonons
Relaxation rates

; (0]0]
Symmetric ground state '}

in zero and finite magnetic field

zero magnetic field finite magnetic field

Ad A A

symmetric w.r.t. Iy, and ly symmetric w.r.t. | = Iyly
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Model Electron
Phonons
Relaxation rates

Antisymmetric excited state .0

in zero and finite magnetic field

zero magnetic field finite magnetic field

antisymmetric w.r.t. Iy, and ly antisymmetric w.r.t. | = Iyly
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Electron
Phonons
Relaxation rates

Phonons

piezoelectric and deformation electron-phonon potentials

hQ
de _ bT iQ-R
e 2pVC)\( o +blg)e
HPZ = —iehys S 1/ =My (bgy +blo,)  €OF
= 14 2)VC,, A \MOA —Q\
QX

phonon operators relevant for overlaps

@ phonons are plain waves
@ only acoustic phonons play role
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Model Electron
Phonons
Relaxation rates

Electron-phonon interactions

. -
@ deformation potential
O0Ec = Ueévv
2%
/ —
@ piezoelectric interaction

E
R ——
O
@ Frohlich coupling
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Model Electron
Phonons
Relaxation rates

Relaxation rate

Fermi’s golden rule

27
rate, s = == > [(Ti[H*P(Q, \)[I¢) [20(E: — By — hwq)
QA

/\/\ relaxation rate is proportional to

@ overlap of initial and final
wavefunctions

/\ @ density of states of
phonons
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Electron
Phonons
Relaxation rates

Strategy & tactics

numerics analytics

@ unitary transformation of
the Hamiltonian

@ diagonalize electron @ lowest order perturbation
Hamiltonian (50x50) to get eigenstates

@ overlap due to phonons —
Fast Fourier Transform

@ numerical integration over @ integration possible only in
phonons limiting cases
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Electron
Phonons
Relaxation rates

Orbital and spin relaxation

Ex  Dso
Nso  E]
3
~ A
w 1 ET
. . 1
spin& orbital e -
relaxation (THHEPYTLY > (T1|HE P
some parameter orbital spin
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Model Electron
Phonons
Relaxation rates

Anticrossing (spin hot spot)

drastic effect on spin relaxation

> = A E
W|ﬂh']/ H \\\\\ //// SO
without >< _ 1
3)///’ ‘\\\ rl - rl + rT
/// < \\\ 1 \/E( 1 X)
o s = hi=ty /& hie
. (THHEPTL) ~ (F1HePT)
89 8é 5 90 orbital spin
distance between QDs [nm]
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Single dot
Double dot

Results

Adjusting spin-orbit parameters for GaAs

’.";'
g
= @ 14 T beyound our theory
'§ (3D effects of the field)
g @ (not really a) fit:
& Ibr =18 pm, Id =13 pm
TS IS ) @ anisotropy?
magnetic field B”[T]

P. Stano and J. Fabian, Phys. Rev. Lett. 96, 186602, (2006)
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Single dot
Double dot

Results

Anisotropy

Spin-orbit colinear with the field does not flip the spin

2
«—(IgHy)

“explanation”:

& 200

5 150 o1 1

£ 100] Hls|(r)1 X E(pry_axpx)‘i‘g(axpy_prx)
£ 5 r

(ld_lbr)z
o~ ‘

Hlsicr;(ld = lpr) o (ox + oy )(Px + Py)

spin relaxation is zero if

0.5 1 15
orientation of theinplanefield: y [1]

rate 1+1 2 1 sin(2v)
X St —2—— Y
1212 lalpr Hz o (ox + oy)
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Single dot

Results Double dot

Piezoelectric vs deformation
given by the energy difference

10
Floa:ﬁi T orbital
0, .
£ 10°] ~

5 . . ,
Z10™] N\ ] @ piezoelectric dominates
® ’ @ with one exception

L ‘ | | @ only Bychkov-Rashba

mag,?eﬁcﬁdd%im induces anticrossing

solid: piezoelectric
dashed: deformation

D. V. Bulaev and D. Loss, Phys. Rev. B 71, 205324 (2005)
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Single dot

Results Double dot

Flavour of analytics

s | g | (myahiSc/m)ly 4(1 — B el2/2h) <06T
2|35 rf’i (459mypCPM° /4R°)I3(1 + 5B 1 el2/2h) | SO5T
o © | 1Y% | (Blmypc2eem®/4n®)I2(1+ 3B el2/2h) | S0.8T
gl [T (128my¢m?/3R7c3)I8|uB 1 |7157 <4T
2 la | (1287yp,,m?/35h7¢?)I8| uB P52 4T
B e P x 4c®/3c? SAT
o|g|M (2myar i3 /3e8m5c?)l, 2B ° >4T
S5 (8™’ /35€*m3c?)l 2B T4 24T
> 9| P x 4c®/3c? >6T
E c rd; (32mdf|u|5/3he2c,3)5le22 >8T
2% r (327ype || /35h€?CP)B L Iy 7T
e P x 4c®/3c? 27T
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Single dot
Double dot

Results

Single dot in perpendicular field

§34 Lol 8.10°

?32 108

c

o 30 1.2 5

3] 10 .

& @ hot spot dominates
= 14 .. .

E 10* @ fixing confinement —
£267 .

5" 1e 102 previous case

= 2

523 10°

© 0 10

2 4 6 8
magnetic field BD [T]
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Single dot
Results Double dot

Difference to the single dot case

3.1
< @ ground state is degenerate
@ 3.0 . .
ET at large interdot distance —
P anticrossing is always
Ecj 2.91 present

@ Dresselhaus terms also
= 0 induce anticrossings
distance between QDs [nm]
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Single dot
Double dot

Results

Perpendicular magnetic field

hot-spot dominated — Bychkov-Rashba vs Dresselhaus

= 9 = _ 9
E107 2.180 E 107 6.10
— 150 10 — 1504 108
g 1072 21072
3 10° 5 108
£ 0,100 . £ 0,100
= 10 Z 104
> >
3] (]
£0350 10? E£.0.350 10?
£ 2
os 10° o5 10°
2 0 2 0

0 2 4 6 8 10 0 2 4 6 8 10

magnetic field BD [T] magnetic field BD [T]

Dresselhaus — anticrossings Bychkov-Rashba —
only in true double dot regime anticrossings always there

P. Stano and J. Fabian, cond-mat/0604633, Phys. Rev. B in press (2006)
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Single dot
Double dot

Results

Inplane magnetic field

) 4.10°

E10 1t

=

E 200 10° @ turning the coupling on/off
go' ' 10* is going from the upper to
()

Eo350 10 the lower part

s " @ but how to travel with spin?
£05 -

=% 10

2 4 6 ¢
magnetic field BII [1%
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Exploiting the anisotropy — easy passages

Exploiting the anisotropy

idea — Dresselhaus refers to the crystallographic axes

freedom in the single dot: freedom in the double dot:
@ orientation of the magnetic @ orientation of the magnetic
field field and the double dot
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Exploiting the anisotropy — easy passages

Double dot — inplane magnetic field

anticrossing is sometimes not there!

dots oriented along [100] dots oriented anng [110]

510'3 U 3x10
B ' s
S 10
3 7
g 10
E=

= 108
>

[}

E.0.350° 10°
g .
= 10
E05 3
2 0 ‘ e P

90 135 180 0 45 90 135 180
y [deg] y [deg]

P. Stano and J. Fabian, Phys. Rev. Lett. 96, 186602 (2006)
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Exploiting the anisotropy — easy passages

Easy passage — derivation of effective Hamiltonian

1. unitary transformation to remove linear spin-orbit terms —
find operator A such that [A, Hg] = —Hso

H = Ho + Heo — €*He A = Hy + HP

2. rotate spatial axes to be along the “main” axes of the
potential

Mev = R(8)roid
3. rotate spin “axes” to be along the field

Onew = R(’Y)G'old
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Exploiting the anisotropy — easy passages

Easy passage — explanation

@ effective s-o Hamiltonian:
Hy = — puBo {x[I,,* cos(y — §) — I * sin(y + 8)]
+y[lp,tsin(y — 8) — 17t cos(y + 8)]}

@ crossing states are Fi and I’}
therefore only terms of x symmetry induce the anticrossing

o0

(F1|H1|FX> O(/ 1H1(X)XdX

—00

@ zero x term = no anticrossing

100 dots orientation: tan~y = Igr /Ip
110 dots orientation: v = 135° (robust)

@ perpendicular field?
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Exploiting the anisotropy — easy passages

Double dot — perpendicular magnetic field

try to remove the anticrossing — weak passage

E 10° . .

£ . @ similar effective

Z 10 Hamiltonian

] .

g "~ @ lower symmetry — crossing

= states are 't I}

>

£ 10° @ therefore both x and y

g terms contribute

[}

5 N 10 @ the smaller the field the
° EéSeg] % closer to previous case
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Exploiting the anisotropy — easy passages

Other growing directions

predictions for anisotropy

1. find out how the spin-orbit terms look like — Dresselhaus
terms change

[110] example: Dresselhaus out of plane

< g

2. rotate spin and spatial axes
3. identify term responsible for the anticrossing
4. get conditions for this term to be zero

[110] example: potential along crystalographic y axis, field
perpendicular
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Exploiting the anisotropy — easy passages

Other growing directions — results

predictions for anisotropy

growing dir. in-plane general
[001] lgr COS(’)/ + (5) = b = IBRa 6= 7T/4
=lIp sin(y — ¢)

[111] cos(y—48) =0 2V3lgr +1Ip =0
[110] v=0,0=m/2 lgr COS 6 = +2Ip coté,

sin(d —v) ==+1

[cos a sina 0] 0=m/2, Ip = —Ilgr COS 20,

Ip tan~y = —lgr COS 2c 0=m/4,6=0
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Exploiting the anisotropy — easy passages

What if the potential is not precisely symmetric?

Symmetry downgrade = easy passage downgrade

— ‘ ‘ o @ asymmetry along one axis
g 1073 U 2.10
= does not harm
% 7
o
B 107
£ 0.
= @ xy asymetry does harm
2 5
E 10
2
£
i 10°
0 B ANy @ 103 V/m in one dot — see

the figure
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Exploiting the anisotropy — easy passages

Summary

@ Realistic calculations of spin and orbital relaxation rates in
GaAs quantum dots.

@ Spin relaxation in double dot dominated by spin-hot spots.
@ Exploitation of the spin-hot spot influence is possible due
to the potential symmetry.

@ proposed geometry for spin based quantum computation:
growth [001], double dot along [110], inplane magnetic field
[110]

@ Outlook

@ more electron case
@ coupling to the leads
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