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Reduced density matrix formalism

Goal: Description of ultra-fast (fs) processes in the condensed
phase

full guantum dynamics including dephasing, energy dissipati-
on but also coherences, not only transfer rates, temperature
dependence

splitting in relevant system and thermal bath

Thermal
bath

o - density matrix of the full system
(relevant system + bath)
do(t)
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Reduced density matrix formalism
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Perturbative treatment
H = Hs+Hg+Hsp

every environmental degree of freedom only slightly distorted
= modeled by harmonic oscillators

how strongly does the environment absorb energy?
= spectral density J(w)

perturbation theory in the system-bath coupling Hsg
(2nd order or higher)

In Redfield theory: Markov approximation (neglect of memory
effects): bath correlation times 75 << typical system times s



Decomposition of the spectral density

(] information on the frequencies of the bath modes and their
coupling to the system

o) =5y 50— o)

I
(] property J(—w) = —J(w)

[ numerical decomposition in Lorentzians (Meier and Tannor)

J(w)
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Decomposition of the spectral density
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Environment correlation function
using the theorem of residues

C(t) —a(t)—ib{t) — / 49 ;) eﬁ‘iw_ = % an1J

T

(i Vk) e

+ i Pk {eiQ?tnB(Q,‘f)+e‘iQEt(nB(Q;)+1)}

with QF = Q+ily, Q, = Qx—il, the Bose-Einstein
distribution ng(@) and the Matsubara frequencies vx = 2nk/f3

In principle, the sum over the Matsubara terms is an infinite
one but in practice the sum can be truncated (temperature-
dependent)

time dependence in C(t) is now fully exponential which
enables further analytic treatment



Environment correlation function: Drude form
Drude form

J(@) =no/(1+(0/w0))

poles at w = +iwy
using theorem of residues yields

Vk / a)d

a(t) :ga)d cot( Bag/2)e 2t — z —

and

singularities in a(t) or b(t) such as the singularities at vx = wy

abbreviations

o alt) =31 ot withn, =n'+1
o b(t) = ocleVlt with nj =1



Nakajima-Zwanzig and Shibata identities
Liouville equation ifo(t) = Lo (t) with £... = 1[H,.. ]

for simplicity here H time-independent

use projector &2 onto relevant part of the whole system,
P+92=1 P =P2%p(t)=Po(t)

both identities exact, no approximation so far

Nakajima-Zwanzig identity (time-nonlocal, TNL)

Soot) = —izzpal / P L N1 2).Z Po(T)de

P Le =220 (1 _ 2o (1)

Hashitsume-Shibata-Takahashi identity (time-local, TL)

t
%gzg() _ _i@$[1+i/ S-P) L) _ ) @ P LT dr) L
0

[Za(t) +e TP L0 (1 D)o (to)]



Time-local approach
factorized system-bath coupling Hs g = 3 1, Kn®m

o Ky, system part, @, bath part

P01~ Hsp(0) - Trg (Ko, [ 15 0K,y (p°0 5% 1) e

bath correlation functions (sum of exponentials)
Cmn<T) — TI'B (e—i—iHBTq)me—iHBTq)n)

%P (t) ~ _;_i[HSaP(t)] - Z/Otdf{[Kma e MK e p (1) Crnn( 7)

+p (t)e ™" Kne™'S", KnlCrun(7) }

for simplicity: Hs g = K S (n®Pnm

define operator

t | .
At) = Z/o d7Ch(7)e MS7K s
n



Time-local approach: time-independent
Hamiltonian

define the non-Hermitian effective Hamiltonian
Her = Hs + Hien — IKA(1)
the TL-QME is given by

% = i (Hazp(t) — p()Hee) + (Kp (OAT(R) + A(D)p (DK) .

IN energy representation

WIAD)V) = (u[K]v) /dt’C(t’)e_i“’“vt/ = (U[K|v)O™(t, uy)
0

with analytic expression for @7 (t, w,,) since C(t) is sum of
exponentials



Markov approximation and Redfield theory
simple Markov limit: ©"(t — o, @)

damping matrix 'y, . for Redfield theory

Mviin = Re(VIK[u) (K[A(t = ) [4) .

iImaginary part (Lamb shift) is neglected
at the same time (!) renormalization term is neglected

neglect of only Lamb shift or only renormalization can cause
severe problems

In Redfield theory influence of time-dependent part of
Hamiltonian (laser fields) is neglected (!)



Time-local approach: General formalism

[1 derived from a second-order cumulant expansion of the time-ordered ex-
ponential function

d’;—?) = - p(t)+ /Otdt’%(t’)p(t)

using C(t) = a(t) —ib(t) with
() = ZLutt)at-t) 2 —bt -t 2% t,t) .

Utt) = g+{ —|ft0 t//,,%s(t”)} L =—iK,)] , L =K, ]+ ,

[] this equation can be rewritten as

PO — iz iz (). N O] i) N ).)

with t
/dtat—t)%s(tt)K At /dtbt—t)%s(tt)



Time-local approach: time-dependent

Hamiltonian
define auxiliary operators

t t
AL(t) = / dteh 2t 1K,  Alt) = / dt’ek! 2(t,t)K .
0 0

with these expressions the TL-QME can be written as

Ny

PO _ ignp + 2 (i > POALE ~ AL (t)

k=1

- j[p(t)AL<t>+AL<t>p<t>]>

k=1

auxiliary operators A}, and Al can be determined via

dA! . dA! .
dtk:(%z_'O%S) «+K, d—tk:(ﬁ—lofs) K.

no restriction concerning time-dependence in Hs

time-nonlocal approach equivalent



Accuracy test:
Damped Harmonic Oscillator

Journal of Chemical Physics 121, 2505 (2004).



Population dynamics for harmonic oscillator
(I initially all population in the 3rd excited level
[1 medium temperature: B =1/wy

(1 Drude form, cut-off: wp/mwpy=2, n =0.121
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Population dynamics for harmonic oscillator
(I initially all population in the 3rd excited level
[1 medium temperature: B =1/wy

[ Drude form, cut-off: wp/mp=1, n =0.2
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Population dynamics for harmonic oscillator
(I initially all population in the 3rd excited level
[1 medium temperature: B =1/wy

[ Drude form, cut-off: wp/@p=0.5, n = 0.544
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Population dynamics for harmonic oscillator
(I initially all population in the 3rd excited level
[1 medium temperature: B =1/wy

[1 Drude form, cut-off: wp/@p=0.5, n = 0.0544
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Results for harmonic oscillator: Variance of g

(I initially all population in the 3rd excited level
[1 medium temperature: B =1/wy

[ Drude form, cut-off: wp/@p=0.5, n = 0.544
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Results for harmonic oscillator: Variance of

(I initially all population in the 3rd excited level

[1 medium temperature: B =1/wy

[]

Drude form, cut-off: wp/@wy=0.5, n = 0.544
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Results for harmonic oscillator: Low Temperature

(I initially all population in the 3rd excited level

(] low temperature: 8 = 100/ wy

[ Drude form, cut-off: wp/@p=0.5, n = 0.544
4 ' | ' |




Higher orders through hierarchical scheme

[] above described non-Markovian schemes are lowest order of
this scheme

[1 developed by groups of J. S. Shao (Chem. Phys. Lett. 395, 216
(2004)) and J.-Y. Yan (J. Chem. Phys. 122, 041103 (2004))

[ for bath-correlation function C(t) = aje ™'
Ps order: (

N

“ P10 | ﬁ{\m 1
VAV \/ N
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Coherent control
of electron transfer

In collaboration with
Tomas Mancal and Volkhard May
Humboldt—Universitat zu Berlin

Journal of Chemical Physics 117, 636—646 (2002).



AdeTiVE femtosecond pulse shaping
Quantum Control

selectivity

L ()

e

gas-phase control s

light-polarization control liquid-phase control

Pl |

il

evolutionary optimization

T. Brixner and G. Gerber, ChemPhysChem 4, 419 (2003). 7




Adaptive coherent control

laser, L modified E(f)
pulse shaper

E(t)
L
quantum learning
system algorithm
: A
products
L
detector result objective

R.S. Judson and H. Rabitz 68, 1500 (1992).



Coherent control in presence of dissipation
optimal control theory of Rabitz et al.

realization of an observable at a certain moment in time t;
O(tr) = trs{Op (tr)}

the optimal pulse is defined as extremum of
Lt
1
J(t;E) = O(t;: E) —E/dtit(t)EZ(t)
to

solution
E(t) = K(;f(tt) E)

with

K (.1 E) = s (1 E) [1.p ()]



Coherent control in betaine-30

[] goal: population of the 3rd vibrational state in the electronic
excited state at time t; = 300fs

\ / e

Reaction coordinate




Laser pulse, electronic and vibronic populations
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Molecular electronics:
Influence of laser pulses
on the electron transfer

IN molecular wires

Journal of Chemical Physics 124, 044712 (2006).



The model

J(E)

U(t)

E

J(E)




The model

Hs(t) +H, + HSL
Z Hnrf(t)c;rlcn’ Hnrf(t) — _A(5n+1,n’ =+ 6n,n’+1) + (En + Un(t))ﬁn,n’
nr

% 0oCqCq
G
> (VoCicy +V§cgcl) B \E
q U(t)
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J(E)

Population dynamics
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Determination of the current
[] using electron number operator N, = zchcq

I(t) = e%tr{Nm(t)} — —ietr{[Ni,H(t)]o(t)}

(] defining auxiliary operators

t m-+-m/
Auft) = [ dfCalt—t)Us(t.t)caps(t) = > ALt
0
m+-nm/

/\21(1:)

| Attt elpst) = 3 AL

[] equations of motion for auxiliary operators

Ni(t) = (aliz) cips(t) —i[Hs(t), Af,(t)] + (sz) No(t)
Ni(t) = (&) clps(t) —i[Hs(t), Aky(t)] + (151) A (t)

[ final current equation

1(t) = 2eRe (trs{c] Asa(t)} — trs{eiAa(t)} )



J(E)

Periodic external potential

J(E)
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J(E)

Coherent destruction of tunneling (CDT)
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J(E)

Coherent destruction of tunneling (CDT)

V %
&

U(t)

J(E)

E
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J. Lehmann, S. Camalet, S. Kohler and P. Hanggi, Chem. Phys. Lett. 368, 282 (2003)



CDT: Coupling to phonon bath

v Alt) = Agsin(wt)

%U(t) Un(t) = A(t) O1n — A(t) O2n
A

J(E) s o= E;

E, E, J(E)
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J. Lehmann, S. Kohler, V. May and P. Hanggi, J. Chem. Phys. 121, 2278 (2003)



J(E)

CDT: Short laser pulse
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CDT: Pulse length

Al
\'
- - ?:/\ o E, 0.02
0.015/f
_§ 0.01
0.005
0 | | l I
200 400 000

0
Time[fs]



J(E)

CDT: Electron correlation
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Other current projects in the group
[] calculation of electron transfer in DNA

[] time-dependent calculation and coherent control of CARS
spectra (together with Arnulf Materny, IUB)

[1 MD simulations to understand the molecular motor F{-ATPase

[ MD simulations of antibiotics transport through channels of
bacteria
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