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The theoretical scientis attempting to model transport in 
modern nanoscale systems faces many challenges.  The number 
of atoms requiring a microscopic treatment may vary from a 
few to several millions.  The transport may be coherent, or 
dominated by interaction effects.  No single formalism can 
capture all the different facets, and in this talk I give a birds-
eye-view of the various theoretical tecniques employed in my 
group.  
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• Atomic metal                    
wires/contacts
(DFT + NEGF + SCBA)

• Molecular conductors
(DFT + NEGF + LOE)
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• Supra-molecular conductors
(TB + Quantum diff./Kubo)

• Numerically 
exact solution
(DMRG/Kubo formula)

Transport in nanoscale systems



Quantum diffusion and Kubo formula

• Many nanosystems systems contain ~105-106 atoms

• Imperfect systems: impurities, defects etc.

• First principle methods not usable due to O(N3) scaling

• Need for approximate methods:
– Influence of impurities in bulk 

and on the surface
– Defects
– Barcodes

(Troels Markussen, Mads Brandbyge, APJ)



Theory
• Tight-binding description (parameters are evaluated from 

first principles:

[1]: S. Roche and D. Mayou, Phys. Rev. Lett. 79, 2519 (1997)

• Kubo-Greenwood formula:

• Following [1] this can be rewritten as:

(the trace is taken over some complete set)



Theory

• Tracing over the ‘site’ basis, using                    
the conductance for a 1-D system of length L is 
calculated as:

• Main task: Time evolution of



Time propagation

• The time-evolution operator, U(t), is expanded in 
the orthogonal basis of Chebyshev polynomials:

• Chebyshev states:



• The coefficients are:

• For large n the Bessel function behaves as

• For sufficiently large n the coefficients thus tend to 
zero :

Convergence



• Hamiltonian
• Comparison between Taylor and Chebyshev

• Data: 
– t=-3 eV 
– M=2000 
– T=500 fs

One-dimensional Chain
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Results: Conductance of a CNT

• Perfect CNT – conductance is independent of 
length
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Results: Disordered Si-nanowire

Bulk disorder: little effect (ballistic transport)

Edge disorder: Ohmic behavior



Results: Si-nanowire with H-adatoms

Blue curve: Ohmic behavior

Red curve: Localization
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Modeling of inelastic transport in molecular 
electronics from first principles; 

The DFT-NEGF paradigm
(Thomas Frederiksen, Mads Brandbyge, Magnus Paulsson, APJ)

In recent years several groups have proposed computational algorithms which 
combine the density-functional theory (DFT),and nonequilibrium Green 
functions (NEGF).  We present the basic ideas, and their inherent
limitations, and discuss several applications, and relevance to experimental 
work.  An important very recent extension concerns the inclusion of inelastic 
effects in to the DFT-NEGF paradigm.  Inelastic effects are crucial in many 
practical applications, for example in understanding the stability and heating
occuring in nanoelectronic components.  We describe our recent calculations 
on atomic scale nanowires, for which the theoretical results can be compared
to high-quality experiments.



Plan for this subsection

• Review of the basic equations and their limitations

• Uses and misuses of the Meir-Wingreen formula

• Density functional method for nonequilibrium electron transport

• Inelastic scattering and local heating in atomic gold wires

• Can it be done cheaper - LOE



1.  The basic equations

Philosophy:  

• small system coupled to ideal, large contacts

• in infinite past, the subsystems are separated with respective chemical 
potentials (Caroli et al. 1970)

• the couplings are turned on adiabatically

• Keldysh contour enters because final state is not known

• nonperturbative, self-consistent calculation of the system parameters may 
be necessary

• This is not unique – can think of other ways of approaching the problem



1.  The basic equations (examples of Hamiltonians)



1.  The basic equations (calculation of current)
The current operator:

Current leaving the left contact (requires noninteracting (mean-field)
contacts):

Static limit Meir-Wingreen formula



1.  The basic equations (comments)

• this is just a paradigm – one still needs to evaluate (in one way or another!)

• displacement currents not included require separate treatment

• interpretation – write MW formula in an alternative form:

• first term: current from left  contact to central region

• second term: current from central region to left contact



1.  The basic equations (comments cont’d)

• In general, one needs to solve the coupled Keldysh-Dyson equations:

Limitations:

• physical criteria for selecting what is contact, and what is central region 
(i.e, where are the interactions allowed to operate)?

• charge neutrality of the system?

• energy relaxation in the noninteracting leads (no such Hamiltonians 
present in the formulation)?

• adiabatic turning-on of the contacts – not usually realized in experiments! 
(alternative formulation has been given by Stefanucci et al. PRB 2004), 
following early work of Cini – too early to draw strong conclusions)



2.  Uses and misuses of the Meir-Wingreen formula

(i)  Mean-field theory (DFT):

• an excellent formula (see, e.g., Datta’s book) – but not the whole truth

• forms the basics for a huge number of calculations, even on industrial 
level



2.  Uses and misuses of the Meir-Wingreen formula (cont’d)

(ii) Conservation laws:  write

Then (using Keldysh equation)

and current conservation 

which is a useful check on numerics (N.B. This formula is familiar for 
people working with kinetic theory: integrated collision term must vanish!)

leads to



2.  Uses and misuses of the Meir-Wingreen formula (cont’d)

(ii) Analytics in the wide-band limit.

In atomic limit, the GF can be computed for several important cases.

A single level coupled to phonons:

An isolated Anderson impurity:

Humble advice: do not broaden these GF’s by a phenomenological width (in a 
well-meant but ill-conceived attempt to simulate coupling to leads): lots of 
interesting physics is inadvertently lost!



3.  DFT for nonequilibrium electron transport

• Standard methods for electronic structure calculations assume a finite, 
or a periodic geometry

• Standard methods assume that the electronic system is in equilibrium

• Molecular electronics requires something entirely different:

(a) small, translationally noninvariant subsystem

(b) coupling to semi-infinite leads

(c) nonequilibrium state in the subsystem

To use DFT in nonequilibrium, one must assume that the Kohn-Sham orbitals can 
be used to calculate the current. (Possible extensions: use TDDFT, or current-
density-functional theory)

If this approach is OK, one can use NEGF to construct a nonequlibrium electron 
density, which can be fed back in the DFT loop.  The price is an extra iterative 
subloop, but the convergence can be tested, and improved, by appropriate choice 
of exchange-correlation functional, and/or basis set.



3.  DFT for nonequilibrium electron transport (summary of 
TranSIESTA method)



4.  Inelastic scattering and local heating in 
atomic gold wires

• Pulling an atomic Au wire

C. Untiedt et al. Phys. Rev. B 66, 085418 (2002) 

A. Yanson et al., Nature 395, 783 (1998)



Inelastic phonon signal

T = 4 K

~ 7 atoms

Gold single-atom wire

str
etc

hin
g

• Mode selective (only one main peak seen)
• Conductance drop of 1-1.5% dep. on length
• Drop increase with stretch
• Streching 1Å gives 7meV frequency shift



Phonon interaction

13.4 meV

12.8 meV

9.4 meV

• Born-Oppenheimer approximation
• Harmonic approximation
• Free motion of HO’s 



Self-consistent Born approximation

Hilbert transforms

Delta functions

Assuming free propagation for the phonons



Current conservation?

…SCBA conserves current!



We consider 2 structures and their modes:

13.4 meV

12.8 meV

9.4 meV

10.2 meV

9.9 meV

8 meV

4-atom gold chain

Modes/Geometry:  Plane-wave basis, GGA

Transport: Transiesta (AO-basis set), Au(100) electrodes

el-ph coupling by finite difference  (Head-Gordon & Tully, JCP 96, 3939 (1992))

e-ph self-energy:  SCBA

Au(100)



Nph = nB(4K) ~ 0

All modes included in self-energy
Few modes contribute
Drop ~ 0.5%
Mode softening

Assume damping by some external reservoir: Nph = nB(4K) ~ 0

Frederiksen et al., Phys. Rev. Lett. 93, 256601 (2004).



Mode selectivity ?

•No:   two modes for the strained chain
•No transversal modes participate
•Yes: one mode for unstrained chain (Alternating Bond Mode)

Frederiksen et al., Phys. Rev. Lett. 93, 256601 (2004).



Nph = nB(4K) ~ 0

All modes included
Few modes contribute
Drop ~ 0.5%
Mode softening
Zero slope beyond threshold

Theory:

Experiment:

Frederiksen et al., Phys. Rev. Lett. 93, 256601 (2004).



Energy flow

Energy flow from 
phonon to electrons

Energy flow from 
electrons to phonon

Steady-state

Phonon excitation threshold

• Assuming phonons 
only damped by the 
coupling to electrons

• Steady state number 
of phonons:

Including only the most important mode:

Frederiksen et al., Phys. Rev. Lett. 93, 256601 (2004).



Conductance incl. heating:
Theory

• Larger drop ( 1%)
• Slope of conductance beyond 
threshold

Frederiksen et al., Phys. Rev. Lett. 93, 256601 (2004).



Comparing theory and experiment

Exp.

Frederiksen et al., Phys. Rev. Lett. 93, 256601 (2004).



Full SCBA is computationally too expensive for more 
complicated structures.  Therefore: try lowest order 

expansion in the phonon coupling:
(Magnus Paulsson, Thomas Frederiksen, Mads Brandbyge PRB RC Nov 2005)

– Approximations:
• Lowest order expansion in M
• Energy independent DOS

– Analytical integration over energy
• Lengthy derivation
• Mathematica!



The expression for the current ”simplifies” in the lowest order 
expansion – all GF’s are now without phonon-coupling.

(M.Paulsson, et al., cond-mat/0505473)



• SCBA
– Possible but difficult
– Scattering in Gold chains 

described by DFT
• Lowest order expansion

– Computationally simple
– Accurate
– Intuitive explanation of 

exp.
• Large systems with DFT!



•4-atom Au-wire (sligtly zig-zag)

•Pyramidal bases, (100) surfaces

•4x4 atoms in transverse plane of unit cell

•Single-Zeta plus polarization SIESTA basis 
(9 orbitals per atom)

•Wire, base, and first electrode layer are 
relaxed

•Lowest order expansion calculations (LOE)

•No heating in this calculation!

•Vibrational modes with energy >5meV 
included (low freq modes not accurate)

•Black dotted box indicates the vibrating 
atoms

•Colored (full line) boxes denote the device 
subspace for the transport calculation

•The low tension of the wire leads to high 
ABL mode frequency and small phonon signal.

Does the device size matter?



The important ABL mode
from red/green vibrating region 

(21.9meV)

Notice that the pyramidal bases move, but only VERY LITTLE!



The important ABL mode from black 
vibrating  region (21.6meV)

Notice that the pyramidal bases DO NOT move!
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Density-Matrix Renormalization Group for 
transport – Kubo formalism

(Dan Bohr, Peter Schmitteckert, Peter Wölfle, APJ)

Vision:

DMRG is a (numerically) exact method for calculating 
correlation functions for (mostly one-dimensional) strongly 
correlated systems.  We want to develop a transport theory 
based on DMRG.

Bonuses: Due to its ”exactness”, DMRG will be a very stringent 
benchmark for approximate theories.

Minuses: DMRG is very numerical, and it is not always 
straightforward to interpret the results physically.  Also, DMRG
becomes very costly if one goes beyond 1-d, implying possibly 
only a restricted domain for applications.



The model:



Kubo formula (linear response):

Two different correlation functions can be used to 
calculate the conductivity:

Since these are ground state correlators, (corrector vector) 
DMRG is directly (at least in principle) applicable for their 
evaluation.  



Use damped boundary conditions to reduce finite-size effects 
(here for right lead):

The parameter , which in analytic calculations is a positive 
infinitesimal, must be chosen carefully in numerical 
calculations.

It must be larger than level splitting, arising from the finite 
system size, thus allowing transport.

It must be smaller than the widths of whatever resonances 
the system may exhibit.



An appetizer for the results that can be obtained.

First bench-mark: 
compute the 
conductance for a non-
interacting model, 
which can be solved by 
exact diagonalization.



Examples of results that cannot be obtained by ”simple”
techniques (the beauty of the approach is that interacting and 
noninteracting problems equally difficult/simple!!):
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Thank you for your attention!

All the hard numerical calculations were done by 

• Dan Bohr (graduate student)

• Thomas Frederiksen (graduate student)

• Troels Markussen (Master’s student)

• Magnus Paulsson (post-doc)

• Mads Brandbyge (associate professor)






