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Low-dimensional mesoscopic systems
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â electronic transport is coherent

â electronic correlations may become important
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Transport through interacting region

difficulties:

excitations in the interacting region possible
not for zero-bias conductance at T = 0

coupling to leads → open system
embedding method [Favand, Mila 1998]
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Conductance of a coherent channel

Conductance per open channel:

e2

h

V1 V2
I

Va Vb

I

two-terminal conductance

G = I

V1 −V2
= e2

h
T

G = I

V1 −V2
= e2

h
T

four-terminal conductance

G = I

Va −Vb
= e2

h

T

1−T

accounts for contact resistance

Some basic
concepts

Coherent transport

Persistent current

Embedding
method

Transmission

Test of the method

Basic aspects

Outside half filling

Even-odd effects

Contacts

Disorder & interaction

Atomic chains

Conclusions

Flux-threaded ring

φ

−φ0/2 φ0/2
φ

E(φ)

Φ= φ

φ0
, φ0 = h

e

persistent current: J =−∂E

∂φ

curvature: c =−∂
2E

∂φ2

charge stiffness: D = (−1)N L

2

(
E(0)−E(π)

)
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Kohn conductivity

Kohn 1964

φ

time-dependent flux: φ∼ Eeiωt

iω

Ô current response: J =σEeiωt

with lim
ω→0

ωσ′′(ω) ∼−∂
2E

∂φ2 Drude weight

curvature is a measure of the number of
extended states

paramagnetic or diamagnetic response possible
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How and why does the embedding method work?
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Transport through interacting region

are there extended states in the interacting region?
→ persistent current for interacting region,

Kohn conductivity

can we get electrons into the interacting region?
→ compressibility [Berkovits, Avishai 1996]

→ embedding method
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Transmission through an interacting region

φ

noninteracting part
length LL →∞

interacting part, length LS

persistent current takes into account

number of extended states

contacts between interacting region and lead

embedding setup = tool to determine transmission

no decoherence in the lead

no Luttinger correlations in the noninteracting part
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Persistent current and transmission

point scatterer with transmission t in a
noninteracting ring [Gogolin, Prokof’ev 1994]

J(Φ,N odd) =−evF

πL

Arccos
(|t(EF)|cos(Φ)

)√
1−|t(EF)|2 cos2(Φ)

|t(EF)|sin(Φ)

J(Φ,N even) = J(Φ−π;N odd)

conductance:

g = lim
LL→∞

(
J(π/2)

J0(π/2)

)2

( J0 : persistent current of clean ring)

requires complex DMRG algorithm
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Charge stiffness and transmission

relation to transmission:

D = ħvF

2

[π
2
−Arccos(|t(EF )|)

]
conductance:

g = lim
LL→∞sin2

(
π

2

D

D0

)

real DMRG algorithm sufficient
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A few references on the embedding method

J. Favand, F. Mila, Eur. Phys. J. B 2, 293 (1998)

O. P. Sushkov, Phys. Rev. B 64, 155319 (2001)

R. A. Molina et al., Phys. Rev. B 67, 235306 (2003)
R. A. Molina et al., Eur. Phys. J. B 39, 107 (2004)
R. A. Molina et al., Europhys. Lett. 67, 96 (2004)

V. Meden, U. Schollwöck, Phys. Rev. B 67, 193303 (2003)
V. Meden et al., Europhys. Lett. 64, 769 (2003)

T. Rejec, A. Ramšak, Phys. Rev. B 68, 033306 (2003)
T. Rejec, A. Ramšak, Phys. Rev. B 68, 035342 (2003)
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Spinless fermions

φ

H =−t
L∑

i=1

(
c†

i ci−1 + c†
i−1ci

)
+

LS∑
i=2

U (ni −V+) (ni−1 −V+)

boundary condition: c0 = eiΦcL

ν= 1/2 V+ = 1/2 (particle-hole symmetry)
ν 6= 1/2 V+ must be determined by iteration
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Scaling to infinite ring length (I)

half filling (ν= 1/2), LS = 6
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U = 4, Φ= 3π/4

U = 1, Φ= π/2
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Scaling to infinite ring length (II)

linear scaling for charge stiffness

D(U ,LS,LL) = D∞(U ,LS)exp

(
C(U ,LS)

L

)

96 72 48 36 24

L

−0.1

0

0.1

0.2

ln

(
D

D∞

)

0 0.01 0.02 0.03 0.04 0.05

1/L

U = 3, LS = 20

U = 4, LS = 12

U = 1, LS = 17

U = 2, LS = 13
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Resonances

V0

Vb = 1
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Flux dependence of persistent current
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U = 1

|t | = 0.938

U = 4

|t | = 0.425

Ô interacting region can be described by an
effective point scatterer with transmission t
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Some basic aspects of transport through
a correlated region
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Outside half filling
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signature of Mott transition

suppression of the conductance is most effective at half
filling
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Even-odd effects
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LS = 24

even number of lattice sites:
Ô additional electron costs energy U

odd number of lattice sites:
Ô transfer of electrons does not cost energy
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Influence of contacts
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Ô smoothing of the contacts increases the conductance
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Disorder and interaction
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Ô repulsive interaction can increase the conductance
for sufficiently strong disorder
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Application to the conductance of atomic chains

possible explanantion of conductance
oscillations as a function of length in break
junction contacts
[R. A. Molina, D. Weinmann, J.-L. Pichard,

Europhys. Lett. 67, 96 (2004)]
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Even-odd effects in atomic chains
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R. H. M. Smit et al.,
Phys. Rev. Lett. 91, 076805 (2003)
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Length-dependent oscillations

R. A. Molina et al., Europhys. Lett. 67, 96 (2004)
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Period of oscillation

finite interaction:
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Conclusions

φ

embedding method

8 close an interacting system to a ring by means of a
noninteracting lead

8 interacting region can be described by an effective point
scatterer

8 residual conductance can be obtained from the persistent
current or charge stiffness

Phys. Rev. B 67, 235306 (2003)

Eur. Phys. J. B 39, 107 (2004)


