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The Fermi liquid concept I

• Cel
V ∼ kBT/EF ⇔ classically 3kB/2 per electron ? ; Pauli exclusion principle ; Fermi

see +Fermi surface. Only electrons with kBT/EF � 1 contribute (reduced phase space).

Nice, but · · · why should free electron picture work for an interacting system?

• Landau (1956); concept of adiabatic continuity: turning on the interactions slowly

(adiabatically) allows for a one-to-one map of low-energy excitations of the interacting

system onto those of the non-interacting system.

• Excitations near EF (quasi-particles) are labeled with the same quantum numbers as for

non-interacting particles ; QP dynamical properties are renormalized

• Luttinger theorem: the Fermi surface is preserved after switching on the interactions

(important to define the ground state of the Fermi liquid !)



The Fermi liquid concept II

• Microscopic theory : Single-particle Green functions

G(k, ω) =
1

ω − εk − Σ(k, ω)
=

1

ω − (εk + Re Σ(k, ω))
︸ ︷︷ ︸

Ek

−i Im Σ(k, ω)

• expand Σ(k, ω) near Ek

G(k, ω) = Zk
1

ω − Ek +
i

2τk(ω)

Z−1
k = 1 − ∂ωRe Σ(k, ω)|ω=Ek

→ quasi − particle weight

• Spectral density A(k, ω)

A(k, ω) = −2ImG(k, ω) ∼ Zk × Lorentzian(ω − Ek), Zk < 1



The Fermi liquid concept III



The Fermi liquid concept IV
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Elementary excitations in 3D electron gas

• Dynamical renormalization of Coulomb interaction → screening

; V (q) → V (q)/ε(q, ω)

• Random Phase Approximation: εRPA(q, ω) = 1 − V (q)χ0(q, ω)

Elementary excitations:

(i) Electron-hole pairs

(ii) Collective modes:

charge density fluctuations

ε3D(q, ω) ∼ 1 − (
ωP

ω
)2[1 + O((

qvF

ω
)2)]

ωP ∼ 10 − 15 eV

ω2
P (q) = ω2

P + const. × q2



Breakdown of the Fermi liquid in 1D

(i) ωP (q) ∼ q vF (no gap)

(ii) QP-damping γ = τ−1
k ∼ |k| − kF

(iii) QP weight Zk∼kF
∼ ω − EF

;There are NO QP in 1D in the

low-energy sector! They decay much

faster than adiabatic switch-on of in-

teractions

; Density fluctuations are the relevant

low-energy excitations !

Fermi liquid breaks down · · · †



The TLL I: Linearization

• ”Fermi surface”=± kF , linearize near

kF , i.e. Ek = εk−EF ∼ h̄vF (|k|−kF )

• right- (k> 0) and left (k< 0)-moving

electrons

• Density operators as linear combinations of particle-hole excitations: ρL/R(q) =
∑

k c†k,L/Rck+q,L/R

• ρL/R(q) satisfy approx. bosonic commutation relations

• Can we map (at low energies) an electronic Hamiltonian onto a bosonic one?

YES → BOSONIZATION



The TLL II: Bosonization

• Effective Hamiltonian, bilinear in the charge density

Hc =
2πvF

L

∑

q>0,`=L,R
ρ`(q)ρ`(−q) +

V1

2L

∑

q>0
[ρR(q) + ρL(q)][ρR(−q) + ρL(−q)]

• Express ρL,R(q) through bosonic operators {aq, a
†
q} and diagonalize the resulting Hc.

Hc =
∑

q
E(q)B†

qBq

E(q) = q vF

√
√
√
√
√
√
√1 +

V1

πvF
= q vFK−1

c = q vc(>, <)vF

• Real space representation (Hamiltonian density of a string !)

Hc =
vc

2

∫

dx {KcΠ
2(x) + K−1

c (∂Φ(x))2}

∂2
t Φ(x) − v2

c∂
2
xΦ(x) = 0 ; ω(q) = vc q

Note !: All this is a low-energy theory, ∃ high-energy cut-off q0 everywhere



The TLL III: Spin-charge separation

H = Hcharge(gc) + Hspin(gs)

[H,Hc] = [H,Hs] = 0

; Hc and Hs can be diagonalized inde-

pendently

→Charge density mode with velocity vc

→Spin density mode with velocity vs

Depending on the strength and sign (at-

tractive or repulsive) of the el-el interac-

tion ; vc > vs or vc < vs



The TLL IV: Scaling laws and Transport

• General feature: power-law scaling of correlation functions with non-universal exponents

• DOS: ν(ω) ∼ max(ω, kBT )χ(K)−1

• Zero-temperature conductance G of infinite TLL ∼ K
e2

h

• Single-impurity ”cuts” the TLL in two pieces

→ for repulsive interactions (at kBT = 0 and L → ∞), transmission=0, reflection=1

→ DOS has power-law behaviour and vanishes for E → EF

• TLL between two barriers

; infinitely narrow resonance at kBT = 0 ↔ vanishing DOS for E → 0

• Tunnel experiments
ILL−LL ∼ max(eV, kBT )α(K)

G ∼ max(eV, kBT )α



Carbon nanotubes: a Luttinger liquid?

M. Bockrath et al., Nature 397, 598 (1999)

”Here we present measurements of the conduc-

tance of individual ropes of such SWNTs as a func-

tion of temperature and voltage. Power law behav-

ior as a function of temperature or bias voltage

is observed: G∼ T α and dI/dV∼ V α. Both the

power-law functional forms and the inferred expo-

nents are in good agreement with theoretical pre-

dictions for tunneling into a LL.”

G ∼ max(eV, kBT )α

α → αend(K), αbulk(K), K ∼ 0.28



Carbon nanotubes: a Luttinger liquid?

dI

dV
∼ T αch(γ

eV

2kBT
)|Γ(

1 + α

2
+ γ

ieV

2πkBT
)|

T−α dI

dV
→ universal curve



Summary

• Fermi liquid is unstable in 1D, no QP at low energies ∼ Tomonaga-Luttinger liquid

• The TLL is characterized by:

(i) zero excitation gap in the charge and/or spin sector

(ii) low-energy excitations ; coherent fluctuations of spin and charge degrees of freedom

(iii) spin-charge separation (vc 6= vs)

(iv) power-law scaling in the observables (DOS, I(V), G)

• Haldane’s conjecture (1980-81): Given a 1D interacting system, let there be a branch of

gapless excitations. Then, the TLL is the stable low-energy fixed point of the system ;

asymptotic low-energy properties are described by the TLL with renormalized parameters

(similar to Landau’s Fermi liquid).


