Temperature-Dependent Asymmetry of the Nonlocal Spin-Injection Resistance: Evidence for Spin Nonconserving Interface Scattering

Wilfried Meindl

Journal Club, 22.06.2005

Wilfried Meindl Asymmetry of the Nonlocal F/N/F Spin-Injection Resistance

Abstract Motivation

Abstract

PRL 94, 176601 (2005)

PHYSICAL REVIEW LETTERS

week ending 6 MAY 2005

Temperature-Dependent Asymmetry of the Nonlocal Spin-Injection Resistance: Evidence for Spin Nonconserving Interface Scattering

Samir Garzon,1 Igor Žutić,1,2 and Richard A. Webb1,3

¹Department of Physics and Center for Superconductivity Research, University of Maryland, College Park, Maryland 20742, USA ²Center for Computational Materials Science, Naval Research Laboratory, Washington D.C. 20375, USA ³Department of Physics and USC NanoCenter, University of South Carolina, Columbia, South Carolina 29208, USA (Received 30 August 2004; published 2 May 2005)

> We report nonlocal spin injection and detection experiments on mesoscopic $Co - Al_2O_3 - Cu$ spin valves. We have observed a temperature-dependent asymmetry in the nonlocal resistance between parallel and antiparallel configurations of the magnetic injector and detector. This strongly supports the existence of a nonequilibrium resistance that depends on the relative orientation of the detector magnetization and the nonequilibrium magnetization in the normal metal providing evidence for increasing interface spin scattering with temperature.

DOI: 10.1103/PhysRevLett.94.176601

PACS numbers: 72.25.Ba, 72.25.Hg, 72.25.Mk, 75.75.+a

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Abstract Motivation

Motivation

Effect

Spin injection in F/N/F-contacts

Result

Previously unseen spin- and temperature-dependent asymmetry in the interface scattering

Applications

Spectroscopic tool:

- pairing symmetry of unconventional superconductors
- Skyrmion excitations in the quantum Hall regime
- spin-charge separation in non-Fermi liquids

A (1) > A (2) > A

Sample Theory Measurements

Sample

 F_1 : Injector, F_2 : Detector F_1/N , F_2/N : tunnel contacts

Sample data

- F/N tunnel contacts: $Co - Al_2O_3 - Cu$
- layer thicknesses: Co 36 nm, Al(!) 2 nm, Cu 54 nm
- Iine widths: 100 nm
- length of lines:
 F₁ 2.4 μm, F₂ 4.5 μm

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Sample Theory Measurements

Electrochemical Potential I

Injector F1

- *no* \downarrow -electrons at $E_{F,F1,\downarrow}$
- many ↑-spins at E_{F,F1,↑}
- \rightarrow \uparrow -magnetization current

Detector F2

• $F_1 \uparrow F_2 \uparrow \rightarrow E_{F,F2} = E_{F,P,\uparrow}$ • $F_1 \uparrow F_2 \downarrow \rightarrow E_{F,F2} = E_{F,P,\downarrow}$ • voltage: $V \propto E_{F,F2} - E_{F,0}$

・ロト・オラト・オラト・オラト ラ つへの Asymmetry of the Nonlocal F/N/F Spin-Injection Resistance

Sample Theory Measurements

Electrochemical Potential II

Nonlocal Voltage

Current between F1 and N

- \rightarrow spin accumulation at the interface F₁/N
- $\rightarrow \ \text{non-uniform spin} \\ \text{distribution in N}$
- ightarrow at F₂ voltage $V \propto \mu_{\uparrow} \mu_{\downarrow}$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

3

Sample Theory Measurements

Definitions

Nonlocal Resistance

$$\mathcal{R}_{NL} = V_{\mathcal{T}_2 - N_2} / I_{\mathcal{T}_1 - N_1} = \pm (\rho_N \lambda_N / 2 \mathcal{A}_N) \exp(-L/\lambda_N) \mathcal{P}_1 \mathcal{P}_2$$

- ρ bulk resistivity
- A cross sectional area of the interface

$$+/- \ F_1 \uparrow F_2 \downarrow / \ F_1 \uparrow F_2 \uparrow$$

 λ_N spin diffusion length in N

Contact Resistance

$$m{R}_{\sigma} = (\mu^{F}_{\sigma} - \mu^{N}_{\sigma})/(m{el}_{\sigma})$$

Interface Polarization at
$$F_i/N_i$$

 $P_i = (R_{i\uparrow}^{-1} - R_{i\downarrow}^{-1})/(R_{i\uparrow}^{-1} + R_{i\downarrow}^{-1})$

Asymmetry of the Nonlocal F/N/F Spin-Injection Resistance

Sample Theory Measurements

Switching, Spin Polarization, Spin Diffusion Length

Switching

- ac current 10 to 50 µA
- *T* = 4.2*K*
- B-field sweep: 0.18 mT/s

Hanle effect (inset)

- $\bullet \ F_1 \uparrow F_2 \uparrow \\$
- $B_{\perp} \rightarrow$ spin precession
- ightarrow decreasing ${\it R_{\it NL}} \propto ec \sigma \cdot ec M$

Wilfried Meindl

▲ロト 4 部 ト 4 部 ト 4 語 ト 4 語 ト 連 の Q C Asymmetry of the Nonlocal F/N/F Spin-Injection Resistance

Sample Theory Measurements

Temperature Dependent Measurements: R_{NL}

Nonlocal Resistance

Asymmetry between $R_{NL}^{\uparrow\uparrow}$ and $R_{NL}^{\uparrow\downarrow}$

Symmetric/Antisymmetric Resistance

$$\mathsf{R}_{\mathcal{S},\mathcal{A}} = (\mathit{R}_{\mathit{NL}}^{\uparrow\uparrow}\pm \mathit{R}_{\mathit{NL}}^{\uparrow\downarrow})/2$$

- *R*_A spin scattering in Cu, reduction of magnetization in Co (magnons)
- *R_S* spin-dependent scattering at detector interface!

Image: Image:

Sample Theory Measurements

Polarizations

Symmetric/Antisymmetric Polarization

$$P_{\mathcal{S},\mathcal{A}} = (P_2^{\uparrow\uparrow} \pm P_2^{\uparrow\downarrow})/2$$

P2: N/F2 spin transport

Fits

$$egin{aligned} \mathcal{P}_{\mathcal{A}} \propto \mathcal{P}(\mathcal{T}) &= \mathcal{P}_0(1 - \eta \mathcal{T}^{3/2}) \ au_{\mathcal{P}} \propto au, au_{\mathcal{P}}/ au &= a^{\mathcal{P}} \end{aligned}$$

•
$$\rho_{Cu} \Rightarrow \lambda_N(T)$$

• $\lambda_N(T), P(T), \sqrt{P_1P_2}, R_A, R_S \Rightarrow P_A, P_S$

Wilfried Meindl

Asymmetry of the Nonlocal F/N/F Spin-Injection Resistance

Result Summary

Interfacial Spin-Scattering

Model

The behavior of P_A and P_B can be modeled by

$$P_2 o ilde{P}_2 = rac{(R_{2\uparrow}^{-1} - R_{2\downarrow}^{-1}) \pm (R'_{2\uparrow}^{-1} - R'_{2\downarrow}^{-1})}{(R_{2\uparrow}^{-1} + R_{2\downarrow}^{-1}) + (R'_{2\uparrow}^{-1} + R'_{2\downarrow}^{-1})} = P_A \pm P_S$$

 $R'_{2\uparrow,\downarrow}$ spin-scattering contact resistances at F₂

A First Explanation

Spin- and temperature-dependent interface scattering is attributed to the **large spin polarization** (50%) of **surface states** of Co.

(I)

Summary

- measurement: temperature-dependent nonlocal resistance of F₁/N/F₂ junctions
- result: asymmetry in the contact resistance for different relative orientations of F₁ and F₂
- control experiments: spurious origin can be ruled out (electrostatic field distribution, imperfect contacts, Joule heating, magnetothermal effects)
- phenomenological model: temperature-dependent spin-flip scattering

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト