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What to expect from computer modeling

Ceo “buckyball”

Zooming in beyond observation

arbon foam

M

Simulations

Computer
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Computational tools

Electronic structure calculations based on the ab Initio
Density Functional formalism

Time evolution of electronic wave functions:
Time-Dependent Density Functional formalism

Atomic motion: Molecular dynamics simulations with
electrons in the ground and excited state

Forces from total energy expressions:
Eiot = Etotl({Ri}) = EodP(r)}
ab initio Density Functional formalism
Eiot = 2i Econ (1) = 2 [Eps (i) + Egp (i) ]
parametrized LCAO formalism (CRT)

Massively parallel computer architectures and suitable
algorithms distribute load over processors for speed-up
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Japanese Computer Is World's Fastest, as U.S.
Falls Back

By JOHN MARKOFF

S AN FRANCISCO, April 19 — A Japanese laboratory has built the world's
fastest computer, a machine so powerful that it matches the raw processing
power of the 20 fastest American computers combined and far outstrips the
previous leader, an LB.M.-built machine.
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Unexpected Behavior of
Nanostructured Systems

Can carbon be harder than diamond?

= Is sp3 bonded diamond really the b
hardest material?

Binding Binding
Energy > Energy

2
Can sp? bonded structures SPp- >3Sp
be harder than diamond? &, J94L. W

Can fullerene-based crystals form such
super-hard structures?

Savas Berber, Eiji Osawa, and David Tomanek,
Rigid Crystalline Phases of Polymerized Fullerenes,
Phys. Rev. B 70, 085417 (2004).




Known 2D Polymers of Cgj,

O O O Cqo FCC
crystals
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“*Are there 3D polymers of C,?



Experimental Observation
Fullerene polymers are harder than diamond

*Polymerization of Cy, » Crystal Structure:

at 820 K under 13GPa pressure BCO (Body Centered Orthogonal)
*Density: p=2.48 g/cm3

*Bulk modulus B~800 GPa [ Diamond: p=3.52 g/cm3 ,B=440 GPa ]

Possible atomic
arrangement:




Possible bonding between C;, molecules
In a polymerized crystal

Common four-

membered ring




Likely candidates for superhard crystals

Polymerized Cg, lattices

o FCC ( Face Centered Cubic)

o SC (Simple Cubic)
»  with (2+2) cycloaddition
»  with four-membered rings
»  with open hinge

o BCC ( Body Centered Cubic )

o BCO ( Body Centered Orthogonal )
» “Hard” phase ( cycloaddition )
»  “SuperHard” phase | and Il (rings along b axis)
» “UltraHard” phase (rings along a and b)



E [eV/atom]

“UltraHard” BCO lattice
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“*Nothing beats diamond



.I'
e
o
g YW
P
-[ i

Nanotube peapods:

nano-memory and beyond

) Y ;
R

=3 _
A ?.___I N N N
.i.‘. *.‘. P .l.. * s -.Tf_m_.‘.._“.

eat e

it 7 e
A\ :

o
b A

bl et
b Y L _‘ e
Ly

KN
XN

iy al

1

_,_

capsule: Non-volatile memory

Cgo@nano

*Writing speed: <1 THz

Bit O/Bit 1
*Packing density: <5 TB/cm? +U.S. Patent 6,473,351

Left/Right




Uses beyond computer memory

Pm.:,: T

eIntercalation of other
species

*Possible New
Applications:

-Pressure container
(e.g. Li, hydrogen

storage)
-Chemical reaction Stress
vessel visualization




Diamondoids in nanotube peapods

*Hydrogen-terminated, nanometer-size
diamondoid particles were isolated
experimentally [J.E. Dahl et al.,
Science 299,96-99(2003)]

*Possible application in
nanotechnology: functional building
blocks with tunable electronic,
structural properties

*Possible encapsulation in nanotubes
provides for more complex
nanostructures

G. C. MclIntosh, M. Yoon, S. Berber, and D. Tomanek, Diamond Fragments as
Building Blocks of Functional Nanostructures, Phys. Rev. B 70, 045401 (2004).



Properties of lower diamondoids

Adamantane:C, ,H,. (G.C. Mcintosh)
AE =-170.530 eV (atomization energy)
Ag, = -60.51 eV (formation energy w.r.t. H,, diamond)
AE/N_= -6.051 eV (formation energy per carbon atom
w.r.t. H,, diamond)
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Hexamantane:C, H,, (G.C. Mcintosh)
AE = -467.905 eV (atomization energy)
AE; =-165.09 eV (formation energy w.r.t. H,, diamond)
AE/N, = -5.503 eV (formation energy per carbon atom
Qp——b—— b w.r.t.H,, diamond)
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Diamondoid encapsulation geometry

diamondoid particles

adamantane

z = distance between the end of the nanotube
and the diamondoid:

z < 0: diamondoid is outside the nanotube.

z > 0: diamondoid has entered into the nanotube.



Diamantane near a (3,3) nanotube """~
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Diamantane inside
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Functionalized diamondoids
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Diamondoid reactions

C.H,,*+CH,,

14" "20

Binding energy
=015eV

Binding energy
=1.64 eV




Diamondoid polymerization

Diamondoid chain: C.H,

Growth Energetics:

AE
CioHie +2mCH, ———>  Ci0.4mH (16+4m)

AE = -9.31eVim

»*Diamond wires can be formed inside a nanotube



Polyacetylene@Nanotubes

A designer superconductor?

Facts:

=»Undoped metallic nanotubes are
superconductors

*Doped polyacetylene ropes are
conductors

Exo- and endohedral PA/CNT system:
*Potential superconductor?

o o
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}9 Q) f?a(*”(")"@)j QC.;.
g S 5
(%gj)) Cag® 0)ie0)
Exohedral Endohedral

Gregory Mclntosh, Yung Woo Park, and David Tomanek,
Phys. Rev. B 67, 125419 (2003)



Electronic structure changes

Charge
redistribution

CoTB -

DOS

DOS

DOS

DOS

Density of states
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—

Findings:

=A small CNT/PA
hybridization modifies

electronic structure near
Er

=van Hove singularities
of PA appear near the
CNT Fermi level

=*One of the PA-induced
singularites is pinned at
Er, thus increasing N(Ep)

*This effect may
increase T, of undoped
CNTs



Outline

Introduction

- What to expect from computer modeling

- Computational tools

Unexpected behavior of nanostructured carbons
- Can carbon be harder than diamond?
Nanotube peapods: nano-memory and beyond
Diamondoids in nanotube peapods

- Polymer-nanotube composites

Defects in carbon nanostructures

- Defect tolerance of nanotubes

- Defect assisted fusion of nanotubes
Nanotechnology in Medicine

- Can We Remotely Destroy Tumors?

Summary and Conclusions



Defects In carbon nanostructures

Defect tolerance of nanotubes

Gate Ox

»Defects limit performance, lifetime of devices

=Are CNT devices as sensitive to defects as Si-LSI circuits?
atomic vacancy

Will atomic vacancies trigger failure under
*high temperatures?
=jllumination?

Yoshiyuki Miyamoto, Savas Berber, Mina Yoon, Angel Rubio, David Tomanek, Can Photo
Excitations Heal Defects in Carbon Nanotubes? Chem. Phys. Lett. 392, 209-213 (2004).



Stability of defective tubes at high temperatures

¢ Danger of pre-melting near vacancies?
7% |vacancy

T=0K T= _.4,000 K
¢ Nanotube remains intact until 4,000 K
¢ Self-healing behavior:

Formation of new bond helps recover

mstructural stiffness
sconductance



Equilibrium structure near a single vacancy

Strain
too large
Note:
No reconstruction Possible?

near a single vacancy
In planar graphite



Bench marking sample
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Energy lowering
1.76 eV / vacancy
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Structure stabilization by reconstruction
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Wall curvature helps reconstruction
In thin nanotubes



Stability of defective tubes during
electronic excitations

excited state

A
ground state &)

Challenges:

¢ Perform Molecular Dynamics simulations on the
adiabatic surface of an electronically excited state

¢ Solve the time-dependent Schrodinger equation for
electrons during ionic motion



First-principles Molecular Dynamics simulation on the
adiabatic surface of an electronically excited state

To follow the correct adiabatic surface
of an excited state is quite difficult

4 \ le> -

a

Non-adiabatic decay (finite lifetime)

Potential

Reaction coordinate

¢ First-Principles Simulation tool for Electron-lon Dynamics

¢ Details: Sugino & Miyamoto PRB 59, 2579 (1999); PRB 66, 89901 (2002).



0.9 eV)

Optical excitation (AE

electron




Time evolution of the electronic states
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S due to new bond formation



Outline

Introduction

- What to expect from computer modeling

- Computational tools

Unexpected behavior of nanostructured carbons
- Can carbon be harder than diamond?
Nanotube peapods: nano-memory and beyond
Diamondoids in nanotube peapods

- Polymer-nanotube composites

Defects in carbon nanostructures

- Defect tolerance of nanotubes

- Defect assisted fusion of nanotubes
Nanotechnology in Medicine

- Can We Remotely Destroy Tumors?

Summary and Conclusions



Nanotechnology in Medicine

Can We Remotely Destroy Tumors?

(&

cancer
tumor

**Can we target medication delivery?

Mina Yoon, Peter Borrmann, and David Tomanek, Targeted medication
delivery using magnetic nanostructures (submitted for publication).




Targeted Medication Delivery

Inhomogeneous H

[ >
Transport of
inert capsule

Large Homogenous H

I >

Medication delivery

*How to deliver the active substance?
02°Stability of system?
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Summary and Conclusions

= Polymerized fullerenes form rigid solids, which do not
exceed the bulk modulus of diamond.

= Insertion of diamondoids and plymers in nanotubes
yields new nanostructures with intriguing properties.

= Nanotubes act as an autoclave to facilitate reactions
between encapsulated molecules.

m Self-healing behavior occurs in defective nanotubes.

= [argeted medication delivery may be induced by
structural transitions in finite-size magnetic aggregates.



The End
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