
Atomistic simulations of electronic
transport in organic nanostructures

(Role of incoherent transport in molecular wires)

A. Pecchia, L. Latessa, A. Di Carlo 
Dip. Ingegneria Elettronica, Università Roma “Tor Vergata”, Italy

A. Gagliardi, Th. Niehaus, Th. Frauenheim
Dep. Of Theoretical Physics, University of Paderborn, Germany



Why Organics ?
Scaling limits of logic devices

Scaling limits of memory devices

Versatile
Easy to produce
Easy to interface 
with the bio-world
Building blocks for 
complex structures

Organics for: 

- Transistors
- Sensor
- Memories
- Field emission devices
- Mechanical components



Carbon Nanotubes



Molecular Devices

M. Reed et al, APL 78, 3735 (2001)
J.M. Tour et al, APL 82, 645 (2003)



HP - Cross-bar Memories

S. Williams, APL 82, 1610 (2003) 

Bistable Rotaxane



The DFTB approach I
[Porezag et al. Phys. Rev. B 51, 12947 (1995)]

LCAO expansion of the wave-function
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The Hamiltonian matrix elements are obtained as following:

1) Creation of (pseudo)atomic orbitals fn  by self-
consistent solution of the atomic Kohn-Sham eq.

2) Calculation of the matrix elements
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⎪
⎩

⎪
⎨

⎧

≥

<−
=

−=

∑
=

−

c

N

n
c

n
cn

core

DFTB
bs

LDAscf
totcore

RR

RRRRd
RV

RERERV

p

0

)(
)(

)()()(

2



The DFTB approach II
[Elstner, et al. Phys. Rev. B 58 (1998) 7260]

Atomistic simulations with an approximate DFT method:  
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2nd order expansion of LDA functional
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Non-equilibrium transport

µL µR

Open Boundary conditions

Carriers do not equilibrate

How do we fill up the states ?
In the absence of scattering:
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• Green’s function approaches are numerically stable 
• Inclusion of scattering (e-ph, e-e, etc) by self-energy functions.



NEGF + DFTB = gDFTB
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SAMs of dithio-phenylene
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insC

Bare Potential

Partial Screening

CQ of CNTs

L. Latessa et al., In preparation



IV Characteristics

n i n

(Infineon)



The ICODE HUB

http://icode.eln.uniroma2.it

INTERNET COMPUTING ON DEMAND



Non-equilibrium scattering
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Electron- phonon
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The electron-phonon coupling Hamiltonian is derived by expanding to 
first order the TB-Hamiltonian with respect to the atomic positions.
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ξq is the collective displacement of the atoms along a vibrational
mode. This quantity is quantized as a position operator



Self-energies
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A simple model
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Self-consistent solution
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Inelastic spectroscopy

Wang, Nano Letters, 5, 450 (2004) Kushmerick, Nano Letters, 4, 639 (2004)



36 vibrational modes

Current density vs Energy 
for an applied bias of 400 mV       

Application to benzene

Pecchia et al., J. Comp. Elect. (2005)



Inelastic peaks



Power emitted

Power emitted is computed using:
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Virtual contact current

Power released at 0.4 V 11 nW

33 nWPower released at 1.0 V



Au/octanethiol/Au

Pecchia et al., Nano Letters 4, 2125 (2004)

Tunneling and I-V 
characteristics



Emission rate analysis 

Emission rate for each one of the 
72 vibrational modes considered 
independently

Power released in each mode

Total Power emitted at 2.0 V

W=0.16 nW

Au-S ModesC-S ModesC-C ModesCH2 ModesC-H ModesAu-H Modes

The power is mostly released in the C-C stretch modes 



Comparison with our result



Limitations of DFT

Tunneling is usually calculated using DFT spectrum 

In principle we should include corrections beyond DFT

in order to address this problem. 

(Exact exchange, CI, TD-DFT, GW)  



Correlations: GW

Screened electron-electron potential to
include correlations beyond DFT(B)
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T.A. Niehaus et al., Cond-matt/0411024



Effect of QP Corrections

HOMO LUMO

Trasmission function for a single 
benzene molecule between copper 
contactsincluding QP correction

Pecchia et al., J. Comp. Elect. (2005)



Future Work

• Implement real part on the self-energy to account 
for polaronic formation

• Construct a model for phonon relaxations in order to 
study heat dissipation into the contacts.
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