Dissipative Effects in the Electronic Transport through DNA molecular wires

Rafael Gutierrez

Sudeep Mandal

Gianaurelio Cuniberti

Molecular Computing Group

University of Regensburg

Motivation: Transport in *single* Poly(GC) oligomers in *water*

B. Xu et al. Nanoletters 4, 1105 (2004)

Motivation: Transport in *single* Poly(GC) oligomers in *water*

B. Xu et al. Nanoletters 4, 1105 (2004)

 \implies Ab initio (H. Wang et al. (2004)): dry Poly(GC) $\rightsquigarrow e^{-\gamma L}, \gamma \sim 1.5 \text{ Å}^{-1}$ Algebraic behavior induced by the environment ?

A minimal model for a DNA wire in water

Method+Approximations

- Green function techniques
- low-bias, equilibrium regime
- conductance $g = g_0 t(E) = g_0 Tr[G_W^{\dagger} \Gamma_R G_W \Gamma_L]$

Results (qualitative): Low-bias, strong dissipative limit

Bath-selfenergy P(E): Re $P(E) \rightsquigarrow k_{\rm B}$ T-dependent polaronic manifold Im P(E) ("friction") \rightsquigarrow incoherent polaron band, pseudo-gap opens Results: Transmission and low-bias current

Crossover from tunneling (low T) \rightarrow activated (high-T) transport

Results: Scaling of $t(E_F)$ with the chain length $L = Na_{bp}$ (T=300 K)

• With increasing coupling to the bath transition from weak exponential ($\gamma \ll 1$) $t_F \sim e^{-\gamma L} \Longrightarrow$ algebraic $t_F \sim L^{-\alpha}$ Results: $t(E_F, T)$ (Arrhenius plot)

Activated behaviour: $t(E_F) \sim e^{-const./k_{\rm B}T}$

Conclusions + Outlook

- \bullet Environment drastically affects charge transport \leadsto
 - (i) bath-induced pseudo-gap in the wire electronic spectrum (ii) temperature-dependent (incoherent) DOS near E_F \rightarrow non-zero low-bias current at high k_BT \rightarrow weak exponential or algebraic L-dependence \implies Relation to Xu et al. experiments !?
- Outlook:

(internal) dynamical degrees of freedom?

Sequence complexity ? Nonequilibrium transport ?