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•Neglection of ZP motion increases the weight of low-
frequency modes; these modes are less effective in scattering
electrons → the global conductance change is less strong

•Thermal factors of high-frequency modes are basically negli-
gible → ZP motion is dominant for them
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Single-mode analysis: Role of zero-point
(ZP) motion
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Average conductance obtained from the Anderson Hamiltonian.
Results for both, onsite and off-diagonal disorder are shown.
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Effect of thermal fluctuations is qualitatively similar to Anderson
disorder
(see also Anantram/Govindan PRB 58 4882 (1998))

Static disorder
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•FPA and MD yield similar results → harmonic approxima-
tion works well for CNTs

•Zero-point fluctuations in the FPA induce sudden decrease
of gFP w.r.t. the static, ideal CNT conductance

•Conductance dips at the crossover points, where new bands
start to contribute

•Negligible influence of structural fluctuations on the massless
linear bands crossing the Fermi energy

• Strong conductance suppression on higher-lying bands re-
lated to band mixing

Time-averaged conductance from molecular dynamics simu-
lations

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

g M
D

(2
e2 /h

) ground state
1 K
500 K

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
E-E

F
 (eV)

D
O

S

c)

d)

Average conductance in the frozen-phonon approach
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FP- and MD-approaches
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Electronic band structure and corresponding density of states
(DOS) for the perfect infinite (4,4) CNT. a0 = 2.46 Å is the
nanotube lattice constant.
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Snapshot of the vibrating scattering region (green) of the CNT.
The semiinfinite contacts (red) also consist of (4,4) tubes with
a fixed geometry.

Physical System: Metallic (4,4) CNT
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(i) Density-functional-parametrized tight-binding approach to calculate the
electronic and structural properties of the molecular junction

(ii) Harmonic approximation for the lattice degrees of freedom, i.e.

Hvib =

3N∑

α=1

(

p2
α

2mα
+

mα

2
ω2

αx2
α

)

,

where mα is the reduced mass of mode α, and ωα the corresponding
mode eigenfrequency. The frequencies ωα and mode eigenvectors eα are
determined by diagonalization of the Hessian matrix.

(iii) Thermal fluctuations included in two complementary ways :

1. frozen-phonon approach (FPA): the scattering region is distorted ac-
cording to the phonon eigenvectors

2. Molecular dynamics simulations (MD): the atoms on the scattering
region evolve in time according to the classical dynamics of a system
in contact with a thermal bath. The forces are calculated quantum
mechanically, however.

(iv) Average transmission probabilities:

1. FP calculations:

gFP = g0 〈T (E)〉α = g0

∫

dx1dx2....dx3NT (E; {xα})P ({xα}),

P ({xα}) =
∏

α

(
mαω2

α

2πEα
)1/2 exp(−

mαω2
α

2Eα
x2

α).

P ({xα}) is a product of gaussian distribution functions for the set
of quasi-random numbers {xα} and Eα = h̄ωα(N(ωα) + 1/2) is the
thermal energy of the α th oscillator.

2. MD simulations:

gMD =
2e2

h
〈T (E)〉τ =

1

τ

∫ τ

0
dtT (E, τ )

[1] A. Pecchia et al., PRB 68 235321 (2003)

Configurational Averages [1]
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H = Hl + HM + Vl,M, l = L, R

T = TrM[G†
MΓRGMΓL]

GM = Green function of the scattering region including coupling

to the leads

Γl = spectral density of l − lead

[(E + i0+)1M − HM − ΣL − ΣR]GM = 1

Σl = V
†
l,MGlVl,M

Γl = i[Σl(E + i0+) − Σl(E + i0−)]

Conductance g ↔ Elastic-scattering problem ↔

Transmission probability T(E)

g = 2
e2

h︸ ︷︷ ︸
g0

T(Ef)

Landauer Conductance
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We study the influence of temperature-induced structural lattice fluctuations on the elastic electron transport in single-wall carbon nanotubes within a density-functional-based scheme.
In the linear response regime, the linear conductance is calculated via configurational averages over the distorted lattice. Results obtained from a frozen-phonon approach as well
as from molecular dynamics simulations are compared. We further demonstrate that the effect of structural fluctuations can be approximately captured by the Anderson model of
disorder. The influence of individual vibrational modes on the electronic transport is discussed as well as the role of zero-point fluctuations (ZPF).
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