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| Abstract I

| Spin Transport |

The effect of disorder on spin transport through
single wall carbon nanotubes (SWCNT) is inves-
tigated.

Model disorder in SWCNTs is is expected to cap-
ture the presence of fabrication related inpurities,
vibrations [1] and even the effects of intershell
interaction in incommensurate multi wall carbon
nanotubes (MWCNT) [2]
With this motivation, we study spin transport
in ferromagnetically contacted disordered single
wall carbon nanotubes in the coherent regime up
to experimentally relevant tube lengths of several
100 nm.

Modelling a two-probe setup I

Conductance in the linear regime at zero temper-
ature (Landauer formula)
T(Ep) 1)

The transmission coefficient 7'(E) can be obtained
from the Fisher-Lee relation [3]

T(E) = tr {T,GT zGL} 2

t
Pryr=iEr =215
Sy p: self energy coming from the left (right) lead
)
72/ projection of Green function onto the con-
ductor

For the leads efficient algorithms exist [4]

To caleulate the Green function of the conductor,
we developed a highly efficient decimation algo-
rithm that allows us to handle CNT of several
hundred nanometers in length (~ 20,000 atoms)

Anderson disordered CNTs I

Anderson disorder is a good model of various kinds
of physical disorder (defects, adsorbants, thermal

vibrations [1], etc.). For our caleulations, disorder
i introduced only in the conductor
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Julliere’s model [6] gives a Stoner shift AE of the
band-structure for the different spin-channels, de-
pending on the magnetization of the leads

Two configurations of magnetization

parallel (p) or anti-parallel (ap)
In cach case two transport channels:
spin-up (1) and spin-down (1)

Measured conductance:
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Parallel magnetization:

AE] = AE} = +|AE| = G} = G+*
ABl=ABL=—|AB = ¢h=0"
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Anti-parallel magnetization:

AE] = +|AE|:AB} = — |AE| = Gl = G
AB} = —|AE|:AEL = +|AE| = Gh, =G

(symmetric system = Gt~ = G™1)

G" = Gl +Gh=G" + G
XMR: coherent magnetoresistance
normalized ratio between the two values, measur-
ing the signal strength

GP — G

XNR = 2oz

Spin transport in embedded
leads

Hamiltonian in 7r-orbital tight-binding approxima-

tion; X
H=Y e, + Y tiyele, 3)

i (i)
t;j = —2.66 cV: hopping parameter between

neighboring atoms
Disorder: random onsite potential ;

€ =€)+ 0¢; 4
Se;; chosen randomly from the interval
[=W/2,W/2] (uncorrelated)
€0 = €V}, constant energy offset (here: Vy = 0)

Conduetance for various strengths of disorder 1W:

G (2e2lh)

(4,4)-CNT, L ~ 100um

Similar results have been obtained before by
Anantram and Govindan [5]

Two semi-infinite, magnetically inert CNTs em-
bedded into ferromagnetic material like cobalt
We only consider what effect the ferromagnetic na-
ture of the contacting material has on the tube
itself.

Assumption: Stoner shift is carried over the the
embedded CNT!

Weak coupling between metal and carbon = CNT
itself can be considered as lead.
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(4,4)-CNT, L~ 100 nm, W =0 eV,
AE =43.0 eV

| Band Analysis

Band structure shifted differently (by the same
amount) in various tube sections

leftlead right lead
shift-3.0ev conductor shift 300V
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The band mismatch between the regions causes
blocking of transport. (No transport between
bands of different angular momentum.)

Disorder assisted transport I

Anderson disorder reduces symmetry = Scatter-
ing between states of different angular momentum
becomes possible.

For stronger energy splits, the gap of the clean
system s bridged. (XMR-value is reduced)
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(4,4)-CNT, L~ 100 nm, AE = £3.0 eV

Spin transport in fec-surface
leads

Alternative approach for leads, fee surfaces con-
tacting a CNT on both ends (surfaces not shown
figure)

Different hopping parameters in the electrodes
(metal-metal) and in the contact (metal-carbon)

0
E (eV)

(6,6)-CNT, L ~ 200 nm, W =0 cV,
AE = £1.0 eV

= contacts do matter! Further investigation
needed
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| Conclusions I

© Disorder decreases the transmission with more
pronounced effects at the van Hove singularities

@ Disorder can enhance transmission and even
bridge band-gaps.

e For fee leads the Julliere’s model may gives
highly fluctuating XMR. The effect of disorder
can be evaluated.
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