Electrical detection of spin precession in a metallic mesoscopic spin valve

F. J. Jedema, H. B. Heersche, A. T. Filip, J. J. A. Baselmans & B. J. van Wees Department of Applied Physics and Materials Science Center, University of Groningen, The Netherlands

Journal Club

Dominik Preusche

09.02.2005

1. Idea and Motivation of the Experiment

2. Theory of Spin Injection and Accumulation

3. Experimental Results

4. Facit

5. Outlook: Spin Valve with Carbon Nanotubes

1. Motivation: Spintronics

Want to use spin DOF for information processing, i.e.

Idea of the Experiment

Co-Al-Co-spin-valve: FNF-tunnel-junction (more precisely a F-I-N-I-F Junction)

spin injection and detection of hot electrons (1eV) above Fermi level Co2: Detector Co1:Injector Apply current I Measure voltage V MCo1 MCo2 Electron spins y ► X A Co₂ Col 500 nm "majority spins" || MCo1 \Rightarrow non-zero spin polarization P (10%) 5 in non-magnetic Al! "minority spins" H MC01

1.1 Fabrication

suspended shadow mask evaporation Si/SiO2 substrate

1.2 Measurement Geometry

Goal: Device resistance R = V/I sensitive to the spin DOF only!

■ AMR contributions

7

- AMR contributions
- \equiv spin flips

2.1 Transport in a Ferromagnet

Spin-dependent ...

Momentum scattering time $\bigotimes_{e} = l_{e} / v_{F} < \bigotimes_{sf} =>$ diffusive regime

8

2.2 Diffusive Regime

e regime	
$t > \bigoplus_{sf}$	
	t > $\odot_{\rm sf}$

- t 'flight time' from Co1-Co2
- $\mathcal{O}_{sf} = (\mathbf{D} \otimes_{sf})^{1/2}$ spin relaxation length typically $\mathcal{O}_{sf} = 1 \square m$
- D diffusion constant (of e in Al)
- L = d(Co1, Co2) = 550-1350 nm

Diffusive Transport Regime

Def: Electrochemical potential (at B=0)

$$\square = \square_{\rm ch} - eV$$

 $\square_{ch} = n/N(E_F) = (\text{excess electron density}) / (\text{DOS at } E_F)$

In the linear response regime (small deviations from equilibrium, i.e. $|eV| < k_BT$)

Electron transport through a diffusive channel is due to a $\Im \square$ of two connected electron reservoirs

A driving force of electron transport, a gradient of \square , can result from either

$$\underline{E} = -$$

 $\& V$
Drift picture $\& n$ $E \mp 0$ $\sigma = e^2 N(E_F) D$ Diffusion picture
 $E = 0, \& n \mp 0$

Diffusion equation

Thus, (1D) spin-coupled diffusion eq. in Al describing the effect of the spin flip processes:

$$D\frac{\partial^2(\mu_{\uparrow}-\mu_{\downarrow})}{\partial x^2} = \frac{(\mu_{\uparrow}-\mu_{\downarrow})}{\tau_{sf}} \longleftrightarrow \textcircled{3.5}''=1/\overset{1}{\bigcirc} \texttt{sf}^2$$

i.e. Non-equilibrium spin accumulation \bigcirc decays over timescale \bigcirc sf.

=> Solution (1):

(1)
$$\frac{V}{I} = \pm \frac{1}{2} P^2 \frac{\lambda_{\rm sf}}{\sigma_{\rm Al} A} \exp(-L/\lambda_{\rm sf})$$

A cross sectional area

3. Experimental Results3.1 Control relative Magnetization of
Co1 and Co2 via B

3.2 Spacing L from Injector Co1 to Detector Co2

3.1 Retrieve ^{Asf}, D and ^{Osf} from **OR(L)** b ■ T = 4.2 K T = 293 K10 (1) $\frac{V}{L} = \pm \frac{1}{2} P^2 \frac{\lambda_{\rm sf}}{\sigma_{\rm Al} A} \exp(-L/\lambda_{\rm sf})$ $\lambda_{sf} = 650 \text{ nm}$ 1 $\lambda_{ef} = 350 \text{ nm}$ 1.200 600 800 1.000 1.400 L (nm) From fit : $P(T=4.2K) = P(T=293K) = 0.11 \pm 0.02$ $\Re f(T=4.2K) = 650 \pm 100nm$ $\Re f(T=293K) = 350 \pm 50$ nm From Einstein relation $\sigma = e^2 N_{A1}(E_F) D$ with $N_{A1} = 2.4 \times 10^{22}$ states/cm³: **D** (T=4.2K) = $4.3 \times 10^{-3} \text{ m}^2/\text{s}$ **D** (T=293K) = $2.7 \times 10^{-3} \text{ m}^2/\text{s}$ From $\mathcal{O}_{sf} = (\mathfrak{O}_{sf} D)^{1/2}$: \odot_{sf} (T=293K) = 45 ps¹⁴ (T=4.2K) = 100 ps

Diffusive Regime Correction

Have many different paths/flight times t in the Al strip from Co1 to Co2

=> broad distribution over
diffusion times t

$$^{r}P(t) = [1/\sqrt{4\pi Dt}] \exp[-L^{2}/(4Dt]]$$

3.3 Diffusion eq. Solution with \underline{B}_{\bigcirc}

Diffusion eq. Solution at large B_{\bigcirc}

At large \mathbb{B}_{\odot} , the Co2 detector electrode magnetization \underline{M}_{Co2} is tilted out of the Al plane by an angle $\underset{\epsilon}{\longrightarrow} \epsilon [0, \frac{\aleph}{2}]$

=> Solution (3):

V/I as a function of (B_{☉,} ☎) at T=4.2 K and L=650nm

V/I as a function of (B_{☉,} ﷺ) at T=4.2 K and L=650nm

V/I as a function of (B_{☉,} ☎) at T=4.2 K and L=650nm

V/I as a function of (B_{☉,} ☎) at T=4.2 K and L=650nm

V/I as a function of (B_{\bigcirc}, \cong) at T=4.2 K and L=650 nm

4. Facit

The device is such that...

- the output voltage V is sensitive to the spin DOF only
- can control sgn(V) via...

1. the relative magnetization $\underline{M}_{Co1} - \underline{M}_{Co2}$ via $\underline{B}_{\parallel}$

2. coherent spin precession via \underline{B}_{\bigcirc} inducing an average precession angle $\langle \phi \rangle = \pi$

- works also at room temperature
- in good agreement with theoretical predictions

ballistic transport in metallic (single wall) CNT
increased length of spin transmission channel
lesser loss of detection signal when manipulating spin

Fuel for Discussion:

Fig. 1(a) Band structure for a ferromagnetic material showing the imbalance in the density of states at the Fermi energy. (b) Schematic representation of a F/N/F spin-electronic device in the anti-parallel and (c) parallel configurations (after Ref. 3).

Diffusion eq. In Al with boundary condtions

general solution for a uniform ferromagnet or nonmagnetic wire (using current conservation)

$$\mu_{\uparrow} = A + Bx + \frac{C}{\sigma_{\uparrow}} exp(-x/\lambda_{sf}) + \frac{D}{\sigma_{\uparrow}} exp(x/\lambda_{sf})$$
$$\mu_{\downarrow} = A + Bx - \frac{C}{\sigma_{\downarrow}} exp(-x/\lambda_{sf}) - \frac{D}{\sigma_{\downarrow}} exp(x/\lambda_{sf})$$

Coefficients A, B, C, D fixed by b.c.

solutions in each of the six regions of

Asymmetry between ⇒ and ⇒ in theV/I curves

... for $B_{\odot} > 200 \text{ mT}$ 3 2 1 (Jun) /// -1 L = 1,100 nmP = 0.11-2 $\lambda_{\rm sf} = 600 \ nm$ $\tilde{D} = 4 \times 10^{-3} \text{ m}^2 \text{ s}^{-1}$ -3 0.5 1.5 2.5 0.0 1.0 2.0 3.0 *В*_⊥ (Т) L = 1,100 nm P = 0.11 λ_z = 600 nm 4×10-3 m2 e

-100

100 200 300

<= Co electrodes tilted out of substrate plane (AL strip)

Condition for large TMR \equiv condition for negligible spin transfer between \uparrow and \downarrow in N

 $\Rightarrow t_N \ll \frac{(l_{sf}^N)^2}{envr_b^*}$

Possible for N = SC (small n), Impossible for N = metal (large n)

A. Fert, H. Jaffrès, Phys. Rev. B, 64, 184420 (2001)