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States near the energetic bandgap of a CNT are predicted
to have an orbital magnetic moment g,y:

e due to the motion of the electrons around the
circumference of the nanotube

e much larger than the Bohr magneton up

e thought to play a role In
- the magnetic susceptibility of CNTs
- the magnetoresitance observed in large MWCNTSs

Electrical measurements were needed to confirm
guantitatively the predicted values for ti,.
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Bandstructure of a CNT with

Graphene:
® zero-bandgap semiconductor/semimetal

® valence and conduction states meet at two points in
k-space, K; and K




Bandstructure of a CNT withou
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e Boundary condition
k. =2j/D, D=Diameter
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Bandstructure of a CNT witho
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e Boundary condition
k. =2j/D, D=Diameter

Depending on:
— chirality

e Energy gap Eg = hvpAky — curvature
— axial strain

— twist etc.
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Bandstructure of a CNT witho
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e Boundary condition - o
k. = 2j/D, D=Diameter ense of orbit
— clockwise (CW)

e Energygap L) = hopAk, -
vl

e Perpendicular component of
orbital velocity
ve = (1/h)(dE/dE)]k,

— anticlockwise (ACW)
If v, <0
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Bandstructure of a CNT with

e Magnetic moment of electron states at the bandedge:

to, = £22-, D=Diameter

directed along the tube axis




Bandstructure of a CNT with

e Magnetic moment of electron states at the bandedge:
to, = £22-, D=Diameter
directed along the tube axis

e Applied magnetic field parallel to the CNT axis shifts
the energy of these states:
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® CNT grown on Si/SIO,
® Electrodes: 5 nm Cr, 50 nm Au

® Suspended segment:
e =500 nm

e Diameters:
— 2.6+0.3 nm Device 1
— 5.0£0.3 nm Device 2

® Angle ¢ between applied magnetic
fleld and the CNT
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Device 2

10T,

Measurements with gold-coated AFM:

—— oxide-bound segments p-type doped
—— suspended section almost intrinsic
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Measurements with gold-coated AFM:
—— oxide-bound segments p-type doped
—— suspended section almost intrinsic
o Vo =V* V,small
—— number of thermally activated charge carriers in suspended section minimized
—— conductance occurs via thermal activation across the energy gap
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Measurements with gold-coated AFM:
—— oxide-bound segments p-type doped
—— suspended section almost intrinsic
o Vo =V* V,small
—— number of thermally activated charge carriers in suspended section minimized
—— conductance occurs via thermal activation across the energy gap

Addition of magnetic field substantially increases the conductance around Vg = V' *.
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Thermally activated transportt

Gsusp (V™*) = Minimum conductance due to thermal activation

Fermi-Dirac:  f1,2(F) = e‘}
1
exp kT +
Landauer: I=22[T(E)fi(E)— f2(E)]

G = dI/dV
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Thermally activated transport

Gsusp (V™*) = Minimum conductance due to thermal activation

Fermi-Dirac:  f1,2(F) = e‘}
1
exp kT +
Landauer: I=22[T(E)fi(E)— f2(E)]

G = dI/dV

2
exp(Ey i /kgT) + 1

2¢?
i=1,2
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Thermally activated transport

Gsusp (V™*) = Minimum conductance due to thermal activation

Fermi-Dirac: fi2(FE) = 61}
o
1

exp T +

Landauer: I=22[T(E)fi(E)— f2(E)]
G = dI/oV
— Gsusp(V*,T) = Z t:]?
1=1,2

Device resistance: G~ G;lsp + G s Gcontact

7

Iargely T-mdependent
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Thermally activated transport

Gsusp (V™*) = Minimum conductance due to thermal activation

Fermi-Dirac: fi2(FE) = 61}
o
1

exp T +

Landauer: I=22[T(E)fi(E)— f2(E)]
G = dI/oV
— Gsusp(V*,T) = Z t:]?
1=1,2

Device resistance: G~ G;lsp + G s Gcontact

7

Iargely T-mdependent

— Toplot: ART)=GV*T) ! -G(Vg<0,T) !
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Device 2:

e B=0: EJ=40meV
[t1]2 + |[t2|> = 1.6 = two channels, nearly ballistic transport
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Device 2:
e B=0: EJ=40meV
[t1]2 + [t2|> = 1.6 == two channels, nearly ballistic transport

e B=10T: Eg=22meV
t1]% + |[t2|> = 0.8 = at least one band is lowered

Device 1 & 2: AR(B,T = const) — Horb = 3 C(C)LS b
Eg(B) = EJ — aB
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Summary of thermal activatio

Horb (meVT_ 1)

D(nm)  EJ(meV) #(°) a(meVT—!)
Experiment  Theory

Devicel 2.6+0.3 36+3 30+3 1.34+0.1 0.7+£0.1 0.5+0.1
60+3 0.7£0.1 0.7£0.1 0.5+0.1
Device 2 5.0+0.3 4043 4543 2.1+0.2 1.5+0.2 1.0+0.2
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Energy level spectroscopy near b

I Device 1, T=15K, ¢ = 30°, Vg > V*:
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Energy level spectroscopy near b
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— Device 1, T=1.5K, ¢ = 30°, Vo > V*:
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= oxide-bound segments
e Quantum levels: .
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G(Vg, B), first 8 Coulomb peaks

— Break of sub-band degeneracy
=5 > 0 tunnelling in CW-states

=& < 0 tunnelling in ACW-states
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.- Wl Device 1, T=1.5K, ¢ = 30°, Vg > V*:
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Device 1, T=1.5K, ¢ = 30°, Vo > V*:

e p-n-tunnel barriers between suspended and
oxide-bound segments

G(Vg, B), first 8 Coulomb peaks

— Break of sub-band degeneracy
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Summary

Morb(meVT_l)
Thermal activation CNTQDs  Theory

Device 1 0.7£0.1 0.7£0.1 0.5+0.1
Device 2 1.5+0.2 1.0+0.2

— applied magnetic field split the K; and K5 sub-bands
— measured u.,, scale with the diameter

—  lorb IS @n order of magnitude larger than the previously measured spin magnetic
moments in CNTs
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