Determination of electron orbital magnetic moments in carbon nanotubes

E. D. Minot, Yuval Yalsh, Vera Sazonova & Paul L. McEuen

Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, New York, USA

presented by Dana Darau, Uni Regensburg

19.01.2005

Contents

- Motivation
- Theory Bandstructure of a CNT
 - without magnetic field
 - with magnetic field
- Experiments
 - Thermally activated transport
 - Carbon Nanotube Quantum Dots (CNTQD)

Summary

States near the energetic bandgap of a CNT are predicted to have an orbital magnetic moment μ_{orb} :

 due to the motion of the electrons around the circumference of the nanotube

States near the energetic bandgap of a CNT are predicted to have an orbital magnetic moment μ_{orb} :

- due to the motion of the electrons around the circumference of the nanotube
- much larger than the Bohr magneton $\mu_{\rm B}$

States near the energetic bandgap of a CNT are predicted to have an orbital magnetic moment μ_{orb} :

- due to the motion of the electrons around the circumference of the nanotube
- much larger than the Bohr magneton $\mu_{\rm B}$
- thought to play a role in
 - the magnetic susceptibility of CNTs
 - the magnetoresitance observed in large MWCNTs

States near the energetic bandgap of a CNT are predicted to have an orbital magnetic moment μ_{orb} :

- due to the motion of the electrons around the circumference of the nanotube
- much larger than the Bohr magneton $\mu_{\rm B}$
- thought to play a role in
 - the magnetic susceptibility of CNTs
 - the magnetoresitance observed in large MWCNTs

Electrical measurements were needed to confirm quantitatively the predicted values for $\mu_{\rm orb}$.

Graphene:

- zero-bandgap semiconductor/semimetal
- valence and conduction states meet at two points in k-space, K₁ and K₂

19.01.2005

• Boundary condition $k_{\perp} = 2j/D, D=$ Diameter

19.01.2005

- Boundary condition $k_{\perp} = 2j/D$, D=Diameter
- Energy gap $E_{\rm g}^0 = \hbar v_{\rm F} \Delta k_{\perp}$

Depending on:

- \rightarrow chirality
- → curvature
- \rightarrow axial strain
- \rightarrow twist etc.

Boundary condition

 $k_{\perp} = 2j/D$, D=Diameter

- Energy gap $E_{\rm g}^0 = \hbar v_{\rm F} \Delta k_{\perp}$
- Perpendicular component of orbital velocity

 $v_{\perp} = (1/\hbar)(dE/dk)|_{k_{\perp}}$

Sense of orbit

- \rightarrow clockwise (CW) if $v_{\perp} > 0$
- \rightarrow anticlockwise (ACW) if $v_{\perp} < 0$

• Magnetic moment of electron states at the bandedge: $\mu_{\rm orb} = \frac{eDv_{\perp}}{4}, \ D = {\rm Diameter}$ directed along the tube axis

- Magnetic moment of electron states at the bandedge:
 μ_{orb} = eDv_⊥/4, D=Diameter
 directed along the tube axis
- Applied magnetic field parallel to the CNT axis shifts the energy of these states:

$$\Delta E = -\overrightarrow{\mu}_{\rm orb} \cdot \overrightarrow{B} = \pm \frac{eDv_{\perp}B_{\parallel}}{4}$$

Experimental setup: Device geometry

- CNT grown on Si/SiO_x
- Electrodes: 5 nm Cr, 50 nm Au
- Suspended segment:
 - L=500 nm
 - Diameters:
 - \rightarrow 2.6 \pm 0.3 nm Device 1
 - \rightarrow 5.0±0.3 nm Device 2
- Angle ϕ between applied magnetic field and the CNT

Measurements with gold-coated AFM:

- $V_{\rm g} = 0$:
 - \rightarrow oxide-bound segments p-type doped
 - → suspended section almost intrinsic

19.01.2005

Measurements with gold-coated AFM:

- $V_{\rm g} = 0$:
 - \rightarrow oxide-bound segments p-type doped
 - → suspended section almost intrinsic
- $V_{\rm g} = V^*$, $V_{\rm g}$ small:
 - number of thermally activated charge carriers in suspended section minimized
 - \rightarrow conductance occurs via thermal activation across the energy gap

Measurements with gold-coated AFM:

- $V_{\rm g} = 0$:
 - \rightarrow oxide-bound segments p-type doped
 - → suspended section almost intrinsic
- $V_{\rm g} = V^*$, $V_{\rm g}$ small:
 - number of thermally activated charge carriers in suspended section minimized
 - \rightarrow conductance occurs via thermal activation across the energy gap

Addition of magnetic field substantially increases the conductance around $V_{\rm g} = V^*$.

 $G_{susp}(V^*)$ = Minimum conductance due to thermal activation

Fermi-Dirac:
$$f_{1,2}(E) = \frac{1}{\exp\left(\frac{E \pm \frac{eV}{2} - E_{\rm F}}{k_{\rm B}T}\right) + 1}$$

Landauer:

 $I = \frac{2e}{h} \int T(E) [f_1(E) - f_2(E)]$

 $G=\partial I/\partial V$

 $G_{susp}(V^*)$ = Minimum conductance due to thermal activation

Fermi-Dirac:
$$f_{1,2}(E) = \frac{1}{\exp\left(\frac{E \pm \frac{eV}{2} - E_{\rm F}}{k_{\rm B}T}\right) + 1}$$

Landauer:

$$I = \frac{2e}{h} \int T(E)[f_1(E) - f_2(E)]$$

$$G = \partial I / \partial V$$

$$\implies G_{\text{susp}}(V^*, T) = \frac{2e^2}{h} \sum_{i=1,2} |t_i|^2 \frac{2}{\exp(E_{\text{g}}^{K_i}/k_{\text{B}}T) + 1}$$

 $G_{susp}(V^*)$ = Minimum conductance due to thermal activation

Fermi-Dirac:
$$f_{1,2}(E) = \frac{1}{\exp\left(\frac{E \pm \frac{eV}{2} - E_{\rm F}}{k_{\rm B}T}\right) + 1}$$

Landauer:

$$I = \frac{2e}{h} \int T(E) [f_1(E) - f_2(E)]$$
$$G = \partial I / \partial V$$

$$\implies G_{\rm susp}(V^*, T) = \frac{2e^2}{h} \sum_{i=1,2} |t_i|^2 \frac{2}{\exp(E_{\rm g}^{K_i}/k_{\rm B}T) + 1}$$

Device resistance: $G^{-1} = G_{susp}^{-1} + \underbrace{G_{p}^{-1} + G_{contact}^{-1}}_{largely T-independent}$

19.01.2005

 $G_{susp}(V^*)$ = Minimum conductance due to thermal activation

Fermi-Dirac:
$$f_{1,2}(E) = \frac{1}{\exp\left(\frac{E \pm \frac{eV}{2} - E_{\rm F}}{k_{\rm B}T}\right) + 1}$$

Landauer:

$$I = \frac{2e}{h} \int T(E) [f_1(E) - f_2(E)]$$
$$G = \partial I / \partial V$$

$$\implies G_{susp}(V^*, T) = \frac{2e^2}{h} \sum_{i=1,2} |t_i|^2 \frac{2}{\exp(E_g^{K_i}/k_B T) + 1}$$

Device resistance: $G^{-1} = G_{susp}^{-1} + \underbrace{G_{p}^{-1} + G_{contact}^{-1}}_{largely T-independent}$ \longrightarrow To plot: $\Delta R(T) = G(V^*, T)^{-1} - G(V_g \ll 0, T)^{-1}$

Journal Club	19.01.2005

Device 2:

• B=0: $E_g^0 = 40 \text{ meV}$ $|t_1|^2 + |t_2|^2 = 1.6 \implies \text{two channels, nearly ballistic transport}$

19.01.2005

Device 2:

• B=0: $E_g^0 = 40 \text{ meV}$ $|t_1|^2 + |t_2|^2 = 1.6 \implies \text{two channels, nearly ballistic transport}$ • B=10 T: $E_g = 22 \text{ meV}$

 $|t_1|^2 + |t_2|^2 = 0.8 \implies$ at least one band is lowered

19.01.2005

Device 2:

•
$$B=0: E_g^0 = 40 \text{ meV}$$

 $|t_1|^2 + |t_2|^2 = 1.6 \implies \text{two channels, nearly ballistic transport}$
• $B=10 \text{ T}: E_g = 22 \text{ meV}$
 $|t_1|^2 + |t_2|^2 = 0.8 \implies \text{at least one band is lowered}$

Device 1 & 2:
$$\Delta R(B, T = \text{const}) \implies \mu_{\text{orb}} = \frac{a}{2\cos\phi}$$

 $E_{\text{g}}(B) = E_{\text{g}}^0 - aB$

Journal Club

19.01.2005

	D(nm)	$E^0(me)/$	ф(°)	$a(me)/T^{-1})$	$\mu_{ m orb}({ m meVT^{-1}})$	
	D(1111)	L _g (mev)	$\varphi()$		Experiment	t Theory
Device 1	2.6±0.3	36±3	30±3	1.3±0.1	0.7±0.1	0.5±0.1
			60±3	0.7±0.1	0.7±0.1	0.5±0.1
Device 2	5.0±0.3	40±3	45±3	2.1±0.2	1.5±0.2	1.0±0.2

19.01.2005

Device 1, T=1.5 K, $\phi = 30^{\circ}$, $V_{\rm g} > V^*$:

 p-n-tunnel barriers between suspended and oxide-bound segments

19.01.2005

Device 1, T=1.5 K, $\phi = 30^{\circ}$, $V_{\rm g} > V^*$:

- p-n-tunnel barriers between suspended and oxide-bound segments
- Quantum levels:

$$\varepsilon(n,i,B_{\parallel}) = \frac{E_{\rm g}^0}{2} + \frac{\hbar^2 \pi^2}{2m_i^* L^2} n^2 \pm \mu_{\rm orb} B_{\parallel}$$

19.01.2005

Device 1, T=1.5 K, $\phi = 30^{\circ}$, $V_{\rm g} > V^*$:

- p-n-tunnel barriers between suspended and oxide-bound segments
- Quantum levels:

$$\varepsilon(n,i,B_{\parallel}) = \frac{E_{\rm g}^0}{2} + \frac{\hbar^2 \pi^2}{2m_i^* L^2} n^2 \pm \mu_{\rm orb} B_{\parallel}$$

- $G(V_g, B)$, first 8 Coulomb peaks
 - \rightarrow Break of sub-band degeneracy
 - $\frac{d\varepsilon}{dB} > 0$ tunnelling in CW-states
 - $\frac{d\varepsilon}{dB} < 0$ tunnelling in ACW-states

19.01.2005

Device 1, T=1.5 K, $\phi = 30^{\circ}$, $V_{\rm g} > V^*$:

- p-n-tunnel barriers between suspended and oxide-bound segments
- Quantum levels:

$$\varepsilon(n,i,B_{\parallel}) = \frac{E_{\rm g}^0}{2} + \frac{\hbar^2 \pi^2}{2m_i^* L^2} n^2 \pm \mu_{\rm orb} B_{\parallel}$$

- $G(V_g, B)$, first 8 Coulomb peaks
 - → Break of sub-band degeneracy $\frac{d\varepsilon}{dB} > 0$ tunnelling in CW-states $\frac{d\varepsilon}{dB} < 0$ tunnelling in ACW-states
- $G(V_{\rm g},B)$ at 2. Coulomb peak

$$\rightarrow$$
 Shift $\frac{dV_{\rm g}}{dB} \sim \frac{d\varepsilon}{dB}$

Journal Club

19.01.2005

Device 1, T=1.5 K, $\phi = 30^{\circ}$, $V_{\rm g} > V^*$:

- p-n-tunnel barriers between suspended and oxide-bound segments
- Quantum levels:

$$\varepsilon(n, i, B_{\parallel}) = \frac{E_{\mathrm{g}}^0}{2} + \frac{\hbar^2 \pi^2}{2m_i^* L^2} n^2 \pm \mu_{\mathrm{orb}} B_{\parallel}$$

- $G(V_g, B)$, first 8 Coulomb peaks
 - $\label{eq:band_degeneracy} \begin{array}{l} \rightarrow \mbox{ Break of sub-band degeneracy} \\ \frac{d\varepsilon}{dB} > 0 \quad \mbox{ tunnelling in CW-states} \\ \frac{d\varepsilon}{dB} < 0 \quad \mbox{ tunnelling in ACW-states} \end{array}$
- $G(V_g, B)$ at 2. Coulomb peak

$$\rightarrow$$
 Shift $\frac{dV_{\rm g}}{dB} \sim \frac{d\varepsilon}{dB}$

$$\implies \mu_{
m orb} = \left| \frac{d\varepsilon}{dB} \right| = 0.7 \pm 0.1 \ {
m meVT^{-1}}$$

	$\mu_{ m orb}({ m meVT^{-1}})$				
	Thermal activation	CNTQDs	Theory		
Device 1	0.7±0.1	0.7±0.1	0.5±0.1		
Device 2	1.5±0.2		1.0±0.2		

- \rightarrow applied magnetic field split the **K**₁ and **K**₂ sub-bands
- \rightarrow measured $\mu_{\rm orb}$ scale with the diameter
- $\rightarrow \mu_{orb}$ is an order of magnitude larger than the previously measured spin magnetic moments in CNTs

19.01.2005