Beobachtung und Anregung von Oberflächenreaktionen mit dem Rastertunnelmikroskop

Ludwig Bartels

Univ. of California, Riverside

- Rastertunnelmikroskopie
- Untersuchung von Methoden der Organischen Chemie anhand einzelner Moleküle
- Die Diffusionsdynamik von CO auf Kupferoberflächen
- Zusammenfassung

Beobachtung und Anregung von Oberflächenreaktionen mit dem Rastertunnelmikroskop

- Rastertunnelmikroskopie
- Untersuchung von Methoden der Organischen Chemie anhand einzelner Moleküle
- Die Diffusionsdynamik von CO auf Kupferoberflächen
- Zusammenfassung

Dank an: Dr. Kin Wong Dr. Rao Bommisetty Dr Anwei Liu Dr. Viatcheslav Grebenev Dr. Ernst Knoesel Dr. Jiangwei Ma Dr Andreas Thoß Dr. Daniel Vempaire **Ki-Young Kwon Robert Perry** Erick Ulin-Avila Xing Lin **Tong Jiao** Qibin Zhang Jintao Zhang Casey Dugger Sara Dirvianskis **Greg Pawin** Greg Aniol Luke Nysen **Elizabeth Cheng** Suzanne Ahmed

Grundlagen STM

Grundlagen STM

Field: 0-5V/nm Current Density: 0-10⁸ A/cm² Distance: 7Å Tip Speed: 0-10µm/s Time Resolution: 10µs-Days Spatial Resolution: 1pm

Molekularelektronik

Self-Assembled Reversible Molecular Switch

UNIVERSITY OF CALIFORNIA, RIVERSIDE

The first demonstration of a reversible molecular switch. Over 1000:1 on-to-off ratio in switching. (Science, 1999, 286, 1550) Typical devices are ~30:1 on-to-off.

Thiol Bindung zum Substrat

J.F. Stoddart, J.R. Heath, et al., JACS 123, 12632 (2001)

M.A. Reed, J.M. Tour, et al., Science 278, 252 (1997).

Thiophenol/Cu(111)

p-Bromothiophenol

B.V. Rao et al., JCP 119, 10879 (2003)

p-Bromothiophenol

B.V. Rao et al., JCP 119, 10879 (2003)

- Literaturwerte für die S-Cu Bindung: 2.1-2.4 Å
- Benzol-Metall Bindungen:
 <2 Å

Abhängigkeit der Rate vom Substituenten

ERSITY OF CALIFORNIA, RIVERSIDE

Die Hammett Gleichung

96

LOUIS P. HAMMETT

Vol. 59

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, COLUMBIA UNIVERSITY]

The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives

By LOUIS P. HAMMETT

The effect of a substituent in the meta or para σ is a substituent constant, dependent upon the position of the benzene ring upon the rate or upon the equilibrium of a reaction in which the reacting group is in a side chain attached to the ring may be represented by a simple formula which is valid within a reasonable precision in a surprising variety of cases. The formula is

 $-RT\ln K + RT\ln K^{\circ} = \Delta F = A/d^{2} \left(\frac{B_{1}}{D} + B_{2}\right)$

K is a rate constant or an equilibrium constant for

substituent; ρ is a reaction constant, dependent upon the reaction, the medium and the temperature. Since the only data available consist of values of the $\sigma \rho$ product, it is necessary to assign an arbitrary value to some one σ or ρ . The choice of a value of unity for the ρ constant in the ionization equilibrium of substituted benzoic acids in water solution at 25° was determined by the large amount of accurate data available from the

 $\log [K / K_0] = \sigma$ K: Substituierte Benzolsäure K_o: Benzolsäure

σ -konstante beschreibt Substituenten

p-konstante beschreibt Reaktion

 H_2O + H₃O⁺ SH + H₃O⁺ [Base] [H₃O⁺] [Acid]

Säurestärke der Benzolsäure

Hammett σ Konstante

+ H_3O^+

H₂Q

OH

mit of Sut ertainty σ_{para} meta -0.210-0.0700.02 0.02 Cyclopropyl -0.058 0.01 -0.1650.01 Me tert-Bu -0.070 0.02 -0.1630.04 0.02 -0.1510.02 Isopropyl -0.080-0.150 0.02 Et -0.0600.02 CH₂Ph -0.079 0.04 -0.106 0.04 CH₂OMe 0.020 0.04 0.026 0.04 0.086 0.073 0.04 0.04 CH₂I CH₂Cl 0.086 0.04 0.119 0.04 CH2Br 0.106 0.04 0.119 0.04 0.04 0.172 0.04 CH2CN 0.152 0.04 0.224 0.04 C≡CH 0.198 0.330 0.02 0.445 0.02 CO₂Me 0.04 0.449 0.04 CO₂Et 0.363 0.486 0.02 COMe 0.368 0.02 0.04 0.376 0.04 0.515 POBu₂ 0.435 0.03 0.528 0.04 CF₃ PO(OMe)₂ 0.550 0.03 0.420 0.03 0.04 0.440 0.04 0.580 POPh₂ 0.580 0.02 SO₂NH₂ 0.530 0.02 0.668 0.02 0.623 0.02 CN 0.693 0.04 SF₅ 0.613 0.04 0.02 0.717 0.02 SO₂Me 0.675

 Hammett σ Konstanten werden anhand von Benzolsäure bestimmt und sind in jedem einführendem Lehrbuch der Organischen Chemie zu finden.

JNIVERSITY OF CALIFORNIA, RIVERSIDE

 Die Bedeutung der σ Konstante leitet sich aus ihrer Universalität für verschiedene Reaktionen ab.

B.V. Rao et al., Proceeding of the National Academy (in press)

Hammett Relation

B.V. Rao et al., Proceeding of the National Academy (in press)

70 Jahre Erfahrung in der Auswertung von ρ Konstanten

 Die organische Chemie benutzt ρ Konstanten um den Mechanismus von Rekationen aufzuklären.

ρ>0: Der Übergangszustand hat einen Elektronenüberschuß im Ringsystem

Injektion von Elektronen aus dem Tunnelstrom

|ρ|>1: Die Reaktion ist stärker suszeptibel zu Substitution am Ring als Benzolsäure in Wasser

Das Metallsubstrat schirmt Effekte der Substitution

1 1 1 1 1

B.V. Rao et al., Proceeding of the National Academy (in press)

• Laterale Manipulation: 100 mV, 10 nA, 15K

Bartels L, et al. CPL 385, 36 (2004)

Laterale Manipulation von *p*-Bromothiophenol

Laterale Manipulation von *p*-BromoThioPhenol

CO auf Kupfer

On-top Adsorptionsplatz Desorption bei ca. 190K

Abhängig von der STM Spitze kann CO verschieden Formen im STM-Bild haben.

(Bartels, et al. Appl. Phys. Lett. 71, 213 (1997))

STM vs. Optische Anregung

<u>STM</u>

- Atomare Räumliche Auflösung (<1 Å)
- Begrenzte Zeitliche Auflösung (>10 μs)

Laser

 Begrenzte Räumliche Auflösung (>100 nm)

INIVERSITY OF CALIFORNIA, RIVERSIDE

 'Atomare' Zeitliche Auflösung (<100 fs)

Frühere Versuche:

Chemla, Rasing, Freeman, Taylor, Hamers, Pfeiffer, Gerber, Ho, King, Rieder, Morgenstern

STM vs. Optische Anregung

Eine Kombination aus Laser und STM hat das Potential:

NIVERSITY OF CALIFORNIA, RIVERSIDE

- a) Reaktionen einzelner Moleküle pikosekundengenau untersuchen
- b) Sich im Pikosekundentakt wiederhohlende Reaktion aufzulösen

CO Dynamik nach Anregung mit intensiven Laserpulsen

Optische Anregung durch fs-Laserpulse

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Cu(110), 20-25 K

200fs, 400 nm, 100 µJ

Bartels, L., et al., Science 305, 648 (2004)

Messungen im thermischen Gleichgewicht CO/Cu(110)

Konventionelle STM-Messungen beobachten nur eine Diffusionsrichtung und keine Desorption

Laserinduzierte Desorptionsdaten sind in der Literatur vorhanden (Prybyla et al.)

Aus dem Desorptionsfluß läßt sich die Fluenz ermitteln

Resultat: $30 + - 3 \text{ J/m}^2$

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Kopplungsparameter nach AG Stephenson in PRL 77, 4576 (1997)

Optische Anregung von CO/Cu(110)

5×T_{ad}

Kopplung zwischen Adsorbat-, Elektronen-, und Phononenengieinhalt

$$dU_{ad} / dt = (U_{el} - U_{ad}) / \tau_{el} + (U_{ph} - U_{ad}) / \tau_{ph}$$

Temperaturabhängiger Energieinhalt einer Mode

$$U_x = h v \times e^{1 - \frac{h v}{kT_x}}$$

Diffusionsrate: 2 x10⁻⁶/Puls

 $P_{hop} = \int A_{ad} \exp(-\frac{E_{ad}}{kT}) dt$

<110>

<001>

2

Time (ps)

Α

T_e

T_{ph}

3000-

2000

1000

1.0-B

0.5

0.0

Temperature (K)

Diffusion probability (10⁻⁶/ps)

Bartels, L., et al., Science 305, 648 (2004)

Diffusion Desorption

• Anfänglich ist die Oberfläche ,komplett' bedeckt ...

• Durch optische Anregung ...

• ... wird ein Beugungsmuster auf die Adsorbatverteilung aufgebracht

• 'Langsam' diffundieren die Adsorbate ...

... in die unbedeckten Flächen

UCR UNIVERSITY OF CALIFORNIA, RIVERSIDE

• ... erlaubt die Diffusionsrate massenspektrometrisch zu ermitteln.

STM-gestütztes Analog

• Von einem Teil einer komplett bedeckten Oberfläche ...

STM-gestütztes Analog

• ... werden die Adsorbate durch hohe Tunnelspannung entfernt.

Bartels, et al., Surf. Sci. 432, L621 (1999)

STM-Experiment

- 40 K
- CO/Cu(111)
- 14s/Bild
- 0.9V, 50 pA
- 80x80 Å
- Rohdaten/keine Bildbearbeitung

Bedeckungsabhängige Diffusionsrate

0.9V, 50 pA, 80x50Å , 27s/Bild, 36 K

Abhängigkeit der Diffusionsrate vom Abstand zum nächsten Molekül

- Bei niedrigen Bedeckungen ist der Einfluß des nächsten benachbarten Moleküls am deutlichsten
- Keine Inselbildung bei niedriger Bedeckung
- 800mV, 50 pA, 50x50 A, 27s/Bild, 36K

UCR UNIVERSITY OF CALIFORNIA, RIVERSIDE

Diffusionsrate in Abhängigkeit des Abstands zum nächsten Molekül

 Diffusionsrate ist am größten für eng beieinanderlieg ende Moleküle

Verteilung der Diffusionsrichtungen

- Tangentiale Diffusion besonders stark!
- 36K
- Ca. 4000 Diffusionsereignisse ausgewertet

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Verteilung der Intermolekularen Abstände

• Der Oberflächenzustand von Cu(111) hat eine Periode von ca. 5.5 a_0 .

INIVERSITY OF CALIFORNIA, RIVERSIDE

- Zum Vergleich:
- CO/Cu(110), B.G. Briner, et al. Science 278, 257 (1997): E_{barr} =97 meV, A=3 10⁷ Hz
- Diffusionswahrscheinlichkeit in Rauten, A. J. Heinrich et al, Science 298, 1381 (2002): E_{barr} =9.5 meV, A=2.5 10⁵ Hz

Zusammenfassung

Die Übertragung von Methoden aus der Organischen Chemie erlaubt die Berechnung der Rate STM-ausgelöster Reaktionen

Eine Kombination aus STM und Laseranregung erlaubt Zugang zu energetischen Oberflächenreaktionen.

Nächste Nachbarn können nicht nur attraktive oder repulsive Wechselwirkungen haben, sondern auch die transversale Diffusion erhöhen

Dank

Kooperation mit: T.F. Heinz (Columbia University) J.R. Manson (Clemson University) M. Marsella (UCR) S. O'Brien (Columbia University) T.S. Rahman (Kansas State University)

Bartels Group (past+present) Dr. Kin Wong Dr. Rao Bommisetty Dr. Anwei Liu Dr. Viatcheslav Grebenev Dr. Ernst Knoesel Dr. Jiangwei Ma Dr. Andreas Thoß **Ki-Young Kwon Robert Perry** Erick Ulin-Avila Xing Lin **Tong Jiao** Qibin Zhang Jintao Zhang Casey Dugger Sara Dirvianskis Greg Pawin Greg Aniol Luke Nysen Elizabeth Cheng