Quantum transport in DNA wires: Influence of a dissipative environment

Rafael Gutierrez

Molecular Computing Group

University of Regensburg

In cooperation with S. Mandal and G. Cuniberti

Outline

- Why DNA ?
- Electronic transport in DNA: a bird's eye view
- A model for a dissipative DNA wire
- Electronic transport and Green functions
- Results for strong dissipation (wet DNA)
- Conclusions

Why DNA ?

M. Hazani et al., Chem. Phys. Lett. (2004)

Groundbreaking : repair of oxidative damage
 → ET over long distances (~ 40 Å)
 (C. J. Murphy et al., Science (1993))

 Molecular electronics ⇒ potential applications as template (self-recognition and assembling) as molecular wire (M-DNA, poly(GC)) (in Dresden W. Pompe/M. Mertig !) Electronic transport in DNA: a bird's eye view

- DNA is insulator, metal, semiconductor
 - \rightsquigarrow sample preparation and experimental conditions are crucial

(dry vs. aqueous environment, metal-molecule contacts, single molecules vs. bundles \cdots)

• Theory: Variety of factors modifying charge propagation: static disorder, dynamical disorder, environment (hydration shell, counterions)

> see: D. Porath, G. Cuniberti, and R. Di Felice, Charge Transport in DNA-Based Devices Top. Curr. Chem. (2004)

Transport in *single* Poly(GC) oligomers in *water*

B. Xu et al. Nanoletters 4, 1105 (2004)

Transport in *single* Poly(GC) oligomers in *water*

Ab initio (H. Wang et al. PRL (2004)): dry Poly(GC) $\rightarrow e^{-\gamma L}, \gamma \sim 1.5 \text{ Å}^{-1}$ Algebraic behaviour induced by the environment ?

A model for a dissipative DNA wire

ab initio → (i) decoupled HOMO/LUMO channels, (ii) backbones non conducting,
 (iii) band gap ~ 2 eV (dry), but reduced by water shell+counterions

$$\mathcal{H} = \underbrace{\sum_{j} \epsilon_{b,j} b_{j}^{\dagger} b_{j} - t_{||} \sum_{\substack{\langle i,j \rangle \\ \mathcal{H}_{\mathcal{C}}}} \left(b_{i}^{\dagger} b_{j} + \text{H.c.} \right) + \underbrace{\sum_{j} \epsilon_{j} c_{j}^{\dagger} c_{j}}_{\mathcal{H}_{c}} - \underbrace{t_{\perp} \sum_{j} \left(b_{j}^{\dagger} c_{j} + \text{H.c.} \right)}_{\mathcal{H}_{\mathcal{C}-c}} + \underbrace{\sum_{\mathbf{k} \in \mathcal{L}, \mathcal{R}, \sigma} \epsilon_{\mathbf{k}\sigma} d_{\mathbf{k}\sigma}^{\dagger} d_{\mathbf{k}\sigma}}_{\mathcal{H}_{\mathcal{L}/\mathcal{R}}} + \underbrace{\sum_{j} \left(V_{\mathbf{k},1} d_{\mathbf{k}\sigma}^{\dagger} b_{1} + \text{H.c.} \right) + \sum_{\mathbf{k} \in \mathcal{R}, \sigma} \left(V_{\mathbf{k},N} d_{\mathbf{k}\sigma}^{\dagger} b_{N} + \text{H.c.} \right)}_{\mathcal{H}_{\mathcal{L}/\mathcal{R}-C}} + \underbrace{\sum_{\alpha, j} \Omega_{\alpha} B_{\alpha}^{\dagger} B_{\alpha}}_{\mathcal{H}_{\mathcal{B}}} + \underbrace{\sum_{\alpha, j} \lambda_{\alpha} c_{j}^{\dagger} c_{j} \left(B_{\alpha} + B_{\alpha}^{\dagger} \right)}_{\mathcal{H}_{\mathcal{E}-\mathcal{B}}}.$$

Green function techniques

• Polaron transformation : $\mathcal{H} \Rightarrow e^{S}\mathcal{H}e^{-S}$, $S = \sum_{\alpha,j} \frac{\lambda_{\alpha}}{\Omega_{\alpha}} c_{j}^{\dagger}c_{j}(B_{\alpha} - B_{\alpha}^{\dagger})$

$$\mathcal{H}_{c} \to \sum_{j} (\epsilon_{j} + \underbrace{\sum_{\alpha} \frac{\lambda_{\alpha}^{2}}{\Omega_{\alpha}}}_{\Delta}) c_{j}^{\dagger} c_{j} \qquad \qquad \mathcal{H}_{\mathcal{C}-c} \to -t_{\perp} \sum_{j} [b_{j}^{\dagger} c_{j} \underbrace{\exp\left(-\sum_{\alpha} \frac{\lambda_{\alpha}}{\Omega_{\alpha}} (B_{\alpha}^{\dagger} - B_{\alpha})\right)}_{\mathcal{X}} + H. c.]$$

• Green functions ($\hbar = 1$)

$$G_{jl}(t) = -i < \mathcal{T} \left\{ b_{j}(t), b_{\ell}^{\dagger}(0) \right\} >$$

$$\mathbf{G}^{-1}(E) = E\mathbf{1} - \mathcal{H}_{\mathcal{C}} - \Sigma_{L/R}(E) - t_{\perp}^{2} \mathbf{P}(E)$$

$$P_{\ell j}(E) = -i \,\delta_{\ell j} \int_{0}^{\infty} dt \, e^{i (E+i0^{+})t} \, \mathbf{G}_{\mathsf{c}}(t) \times \underbrace{e^{-\Phi(t)}}_{\langle \mathcal{X}(t) \mathcal{X}^{\dagger}(0) \rangle_{\mathsf{B}}}$$

• continuous bath frequency distribution $(N
ightarrow \infty)
ightarrow$ spectral density :

$$J(\omega) = \sum_{\alpha} \lambda_{\alpha}^{2} \delta(\omega - \Omega_{\alpha}) = J_{0}(\frac{\omega}{\omega_{c}})^{s} e^{-\omega/\omega_{c}} \theta(\omega),$$

$$\Phi(t) = \int_{0}^{\infty} d\omega \frac{J(\omega)}{\omega^{2}} \left[(N(\omega) + 1)(1 - e^{-i\omega t}) + N(\omega)(1 - e^{i\omega t}) \right]$$

The current

$$I_{el} = \frac{2e}{h} \int dE \left(f_L - f_R \right) t(E)$$
$$= \frac{2e}{h} \Gamma_L \Gamma_R \int dE \left(f_L - f_R \right) |G(E)|^2$$

$$I_{\text{inel}} \sim \Gamma_{\text{L}} \Gamma_{\text{R}} t_{\perp}^{4} \times \Sigma_{\alpha} \lambda_{\alpha}^{2} (\cdots)$$

- For $\lambda_{\alpha} \rightarrow 0, I_{el} \rightarrow$ Landauer formula
- G(E) contains all contributions from the bath !
- for $eV \rightarrow 0$ and to lowest order in $t_{\perp} \rightsquigarrow$ neglect I_{inel}
- focuse on $t(E) \rightsquigarrow$ modifications of the electronic spectrum induced by the bath

DOS in the strong dissipative limit:

New $k_{\rm B}T\text{-dependent}$ electronic manifold around $E_{\rm F}{=}0$

Im P(E) ("bath-friction") strongly suppresses the central manifold incoherent polaronic band \rightarrow pseudo-gap opening $G(E \sim E_{\mathsf{F}}) \sim \frac{t_{\perp}^2 e^{-\kappa_0(T)}}{\underbrace{E - (\epsilon + \Delta) + \mathrm{i}\,\eta}} + t_{\perp}^2 e^{-\kappa_0(T)} \Sigma^{(2)}(E) + \cdots$ (all orders)

coherent part

Transmission t(E) and low-bias current I(V)

- pseudo-gap increases with temperature
- central band DOS also increases with temperature
- I(V) displays linear behaviour at high $k_{\rm B}T$

Temperature dependence of $t(E_F)$ (Arrhenius plot)

Activated behaviour

Scaling of $t(E = E_F)$ with the chain length N

• Increasing coupling to the bath

exponential $t_F \sim e^{-\gamma L} \Longrightarrow$ algebraic $t_F \sim L^{-\alpha}$ dependence $(L = Na_0)$

- Exponential dependence is not related to virtual tunneling through a gap ($\gamma \ll 1$ Å $^{-1}$)
- Introduction of a barrier \rightsquigarrow (AT) $_n$ pairs, enforces exp-dependence, $\gamma \sim 0.5$ Å $^{-1}$

Structural fluctuations

Random on-site energies drawn from Gaussian distribution $P(\epsilon) = \frac{1}{\sqrt{2\pi\sigma}}e^{-\epsilon^2/2\sigma^2}$

Disorder does not appreciably affect the pseudo-gap formation

Conclusions

- Environment drastically affects charge transport
- Strong dissipative regime:
 - (i) bath-induced pseudo-gap,

(ii) finite $k_{\rm B}T\text{-dependent}$ DOS near $E_F \rightsquigarrow$

activated behaviour and weak exponential

L-dependence of $t(E_{\rm F})$

 \bullet Contact to Xue $\mathit{et al.}$ experiments

(i) large currents $\sim 50 - 200 \, nA \sim \text{not problem}_{---}$

(ii) (bath-induced) algebraic L-dependence

(iii) $\gamma[(AT)_n] \approx 0.15 \text{ Å}^{-1} < \gamma^{Xue}[(AT)_n] = 0.43 \text{ Å}^{-1}$

