Journal club presentation

by Norbert Nemec

Regensburg, Nov 24, 2004

VOLUME 93, NUMBER 17

PHYSICAL REVIEW LETTERS

week ending 22 OCTOBER 2004

Determination of the Intershell Conductance in Multiwalled Carbon Nanotubes

B. Bourlon,¹ C. Miko,² L. Forró,² D. C. Glattli,^{1,3} and A. Bachtold^{1,*} ¹Laboratoire Pierre Aigrain, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris 05, France ²EPFL, CH-1015, Lausanne, Switzerland ³SPEC, CEA Saclay, F-91191 Gif-sur-Yvette, France (Received 4 June 2004; published 21 October 2004)

We report on the intershell electron transport in multiwalled carbon nanotubes (MWNTs). To do this, local and nonlocal four-point measurements are used to study the current path through the different shells of a MWNT. For short electrode separations $\leq 1 \ \mu$ m the current mainly flows through the two outer shells, described by a resistive transmission line with an intershell conductance per length of $\sim (10 \ \text{k}\Omega)^{-1}/\mu$ m. The intershell transport is tunnel type and the transmission is consistent with the estimate based on the overlap between π orbitals of neighboring shells.

DOI: 10.1103/PhysRevLett.93.176806

PACS numbers: 73.63.Fg, 72.80.Rj, 73.23.-b, 73.40.Gk

Goal of experiment

Measure the intershell conductance of multiwall carbon nanotubes

Previously known:

from experiment:

• interlayer restistivity of **graphite** varies greatly, depending on material quality: $10^3..10^5 \Omega m$

from theory:

- **infinite perfect tubes** have zero intershell transport, due to conservation of Bloch vector and energy
- intershell transmission is large for injected localized wave-packets (attenuation length: ~10 nm)

Basic idea behind the experiment

- outermost shell is contacted in different positions
- current is fixed, voltage is measured
- intershell current paths cause $V_{nonlocal} \neq 0$

three unknown parameters enter the calculation

- ρ_1 and ρ_2 : intrashell-resistance per length
- g: intershell-conductance per length

Experimental setup

Nonlocal voltage measurements on a MWNT electrically addressed by 11 electrodes. The schematics show the 5 μ m long MWNT. The diameter is 17 nm, which corresponds to about 20 shells. The MWNT, synthesized by arc-discharge evaporation and carefully purified [28], was dispersed onto a 500 nm oxidized Si wafer from a dispersion in dichloroethane. Cr/Au electrodes were patterned above the tube by electron beam lithography.

Molecular Computing University of Regensburg

Norbert Nemec

uhv? room pressure?

Data are taken at 250 K. $\Delta V_{\text{nonlocal}}/I$ is measured in the linear regime with $eV = eIR_{2P}$ below kT, R_{2P} being the two-point resistance.

Voltage measurements

Molecular Computing University of Regensburg

Norbert Nemec

nonlocal

- (a) decay length 0.94 μ m
- (b) decay length 0.92 μ m
- (c) prop. to $1 exp(-L/L_a)$ with $L_a = 0.94 \mu m$

Further measurements

Dependence on type of MWCNT?

all 40 measured samples show comparable behavior

Dependence on fabrication process?

 → alternative configuration (MWCNT on top of contacts) gives similar results

Dependence on contact spacing?

 leaving out unused contacts does not change results

Theoretical model

L,*d*,*x*: given by setup L_a , $V_{(non)local}$: measured ρ_1 , ρ_2 , *g*: to be determined

Model based on infinite transmission line:

$$\frac{\Delta V_{\text{nonlocal}}}{I} = \frac{g\rho_1^2 L_a^3}{2} \exp\left(\frac{-x}{L_a}\right) \left[1 - \exp\left(\frac{-d}{L_a}\right)\right] \\ \times \left[1 - \exp\left(\frac{-L}{L_a}\right)\right], \qquad (1)$$

$$\frac{\Delta V_{\text{local}}}{I} = g\rho_1 L_a^3 \left[\frac{\rho_2 d}{L_a} + 2\rho_1 \operatorname{sh}\left(\frac{d}{2L_a}\right) \exp\left(\frac{-L}{2L_a}\right)\right], \qquad (2)$$

with
$$L_a^{-1} = \sqrt{g(\rho_1 + \rho_2)}$$
.

agrees with qualitative behavior of measurements

Evaluation of results

Quantitiative evaluation based on

- $L_a = 0.93 \ \mu m$
- $x = L = d = 0.4 \mu m$ (for V_{nonlocal})
- $d = L/3 = 0.4 \mu m$ (for V_{local})
- average over eight independent measurements, translated along the tube, to avoid dependency on position (imperfections, finite size effects, ...)

Result for one specific sample: $\rho_1 \sim 22 \ k\Omega/\mu m$ $\rho_2 \sim 1 \ k\Omega/\mu m$ $g \sim (20 \ k\Omega)^{-1}/\mu m$

Result for eight samples (6..23 *nm* thick): $\rho_1 \sim 6...25 \ k\Omega/\mu m$ $\rho_2 \sim 0.05...2 \ \rho_1$ $g \sim (3.7...20 \ k\Omega)^{-1}/\mu m$

Further results

assuming $\rho_3 = \rho_2$: contribution of third shell only 10% (for length shorter than 5 µm)

 ρ_1 often higher than ρ_2

-> higher diffusion in outermost shell?

intershell conductivity larger than most theoretical expectations

weak temperature dependency from 8 to 280 K
 -> intershell transmission unlikely to be thermally activated