

Direct Observation of the Transition from the Conventional Superconducting State to the π State in a Controllable Josephson Junction

J.J.A. Baselmans, T.T. Heikkilä, B.J. van Wees, T.M. Klapwijk

Phys. Rev. Lett. 89, 207002 (2002)

Overview

- Supercurrent through SNS junctions: Andreev Reflection
- Experimental setup: Controllable π -SQUID
- Measured data: Periodicity of $C\Phi R$ doubles
- Quasiclasical Theory: energy distribution in the N part
- Conclusion

Andreev Reflection

How can subgap quasiparticles cross the $N \rightarrow S$ interface?

Andreev bound states

bound state: wavefunctions satisfy the boundary conditions imposed by the superconducting phases

$$\Delta \varphi = 2 \frac{\epsilon_n}{\hbar v_F} d = \pm \phi + 2 \arccos \frac{\epsilon_n}{\Delta} + 2 \pi n.$$

where $\Delta \varphi = 2 \, \delta k \, d_{\perp}$ is the relative phase change of the pair and $\delta k = \epsilon / \hbar \, v_F$

17.11.2004

Junction critical current I_c determined by:

- energy spectrum of the Andreev bound states
- occupation of these states

 π -junction: zero current state at $\Phi = \pi$

central question:

How does the transition occur from the 0 to the π state ?

Does the minimum at $\varphi = \pi$ start to develop while the one at $\varphi = 0$ ist still present?

Free energy of the junction:

$$W(\varphi) = \frac{\phi_0}{2\pi} \int_0^{\varphi} I_{sc}(\varphi') \, d\varphi$$

Double mimimum in free energy implies doubling in periodicity of the supercurrent-physe-relation:

$$I_{sc} = I_c \sin(\phi) \rightarrow I_{sc} = I_c \sin(2\phi)$$

experimental setup

- Nb/Ag/Nb junctions
- $E_T = 27 \mu eV$
- Thickness 50nm
- Loop surface area 70µm²
- Control channel length $\approx 5 \mu m$
- $I_c = 11 \mu A$ ($V_c = 0$)

Controllable π SQUID:

control voltage V_c creates non-thermal energy distribution in N

 \Rightarrow reduction of I_c and subsequent transition to π state

SQUID geometry

measurement of $I_{sc}(\phi)$ over entire range of phase ϕ over one of the SNS junctions:

SQUID biased with current slightly larger than I_c $\Rightarrow I_{c,SQUID}(\Phi_{ext}) \text{ transferred into voltage signal}$

17.11.2004

measured data:

FIG. 2. Voltage over the SQUID (from contacts A to B in Fig. 1) at a bias current slightly larger than $I_{c,SQUID}$ as a function of the ϕ_{ext} for different values of V_c . The amplitudes of the two grey curves are multiplied by 1/10. Around $V_{c,critical} = 602 \ \mu V$, a doubling in periodicity of the voltage oscillations is observed.

experimental free energy:

Quasiclassical theory

at $V_{c,critical}$ step distribution will block all positive contributions of J(E):

 $=\pi$ state

Supercurrent carrying density of states for different values of the macroscopic phase difference:

in good agreement with experimental data!

- Andreev reflection enables supercurrent transport in SNS junctions
- $I_{sc}(\phi)$ dependence measured with controllable π SQUID
- arount transition from 0 to π state: periodicity of C Φ R doubles
- energy distribution of quasiparticles in N manipulated by control voltage
- experimental results in good agreement with quasiclassical theory

The End.