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Broad distributions

Physical point of view

@ Many phenomena: well-defined average behavior with
fluctuations around average value

— fluctuations described by narrow distributions

ex: Gauss distribution

@ Other phenomena: properties dominated by fluctuations
(average not important, may not even exist)

— fluctuations described by broad distributions

ex: Lévy distributions

"broad"=power-law tail J




Broad distributions

Mathematical point of view: Central-limit theorem
SN =X1+Xo+ ...+ XN

Sum of N independent random variables X;

@ Case 1: finite second moment (X2) < oo

SNy — Gauss distribution N — oo

@ Case 2: divergent second moment (X?2) — oo

SN — Lévy distribution N — oo

Stable probability distributions J




Lévy distribution

Definition and main properties: Lévy 1937
@ Characteristic function
(k) = /dx P(x)e " = e—clkI O<a<?2
@ Asymptotic power—law decay
1
P(X) ~ W, X — 0 a < 2

@ Second moment diverges

(xz):/dxsz(x)—mo a<?2

Scale-free distributions )




Physical examples

2

— e /2 — it-Wi 11
a=2 Gauss Ners a=1 Breit-Wigner = T
(Errors in astronomical observations) 1809 (Cross-section of resonant scattering) 1936
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(First-passage time distribution) 1915 (Random gravitational force on a star) 1919
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© Lévy diffusion
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@ Experimental observations



Normal diffusion

Example: small particles in a glass of water Perrin 1909

i @ Gaussian dynamics:

L
P

Diffusion equation:
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@ Mean-square displacement:
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(x2) = 2Dt
Irregular, random motion
— Brownian motion — linear in time
Brown 1827



Transport equations: Gauss

System S in contact with bath B
(temperature T)

Langevin 1908

mx + U’(x) 4+ nx = F(t)
n = friction
F(t) = Gaussian random force  (central-limit theorem)

(F(1) =0
(FOF(t')) =2D8(t —t') D = kT

—

(
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Lévy diffusion

@ Definition:
mx + U’(x) +nx = F(t)
F(t) = Lévy random force

(central-limit theorem)

@ Properties:
algebraic tail of force distribution
— large fluctuations

— long jumps (Lévy flights)

Enhanced diffusion ((x?) — o) ]




Flight of an albatross

Flight-time measurement of 30 albatrosses at Bird Island

Typical trajectories: Stanley et al., Nature 1996
L b
30 5
20
Distribution of flight-time intervals: w0
. i
P(t) ~ —— =1l+a~2
( I) (tl + 1)'u K ‘0
00 05 b;:g 15 20

Power-law distribution )




Experiment 1: Diffusion in micelles

Ottet al., PRL 1991
Micelles = polymer-like molecules 1 a=15
that break and recombine rapidly e T

Measurement: intensity of light | 3
emitted by fluorescent atoms after :

photobleaching
— characteristic function

TIME (sec)

Diffusion equation:

Gauss %—f =D gZTFZ’ — %f — _DK2p — 5(k,t) _ o-Dtk?

A oP 9P oP op D - o
Levy ot — IIx[@ %W:—D’k‘ P<—P(k,t):e Dt [k|



Fractional derivative

@ Letter from Leibniz to LHospital: X =7 30.09.1695

d 1/2
dm

dx—mx =(Nn-m)Ix""™=r(n—-—m+1)x"~™

m=1/2,n=1— $7x=r(3/2)x/?

@ Riemann-Liouville operator

d* TPAYeT o .da ax __ aa pax
deéF( ) — (ik)*F (k) Ex: ot —ate

@ Riesz operator

de - de

d|x|aF(X) —|k|*F (k) Ex: X cosax = —|a|” cosax
d* 1 d? F(y)
Tivia =— — 7 _  — -local
d|x|aF(X) fo, dX2 /dy |X _y’a_l non-local



Experiment 2: 2D rotating flow

Weeks et al., PRL 1993

Rotating tank (water + glycerol) Typical trajectory:
1.5Hz

! video camera

)
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a2 d Pdf of duration of flight:
Regime of chaotic advection ®
° a=13

— chain of vortices
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Experiment 3: Surface diffusion

Senft et al., PRL 1995

Palladium atoms on a tungsten lattice T = 133K
a=1251,5s=74

0.3 I T
@ Measurement: 25 "o e
. . -5 .259
displacement of single ZF o2 —
atom on a 1D lattice A E
~ Q.
(field microscopy) 3 o1
g o
) . . 0.05
@ Low diffusion barrier

o
4 6 4 2 0 2 4 6 8

— longs jumps
(2, 3 or more lattice sites) Ax (Hop Distance In Lattice Lengths )

oK) = el

Realization of 1D discrete random walk J




Experiment 4: Saccadic eye movements

Brockmann and Geisel 2004

@ Magnitude of visual angle:
0.1° < x < 100°

@ Pdf of saccadic magnitude

larger than x:

P>(X) — fxoo dX/X/—(1+a)
~ X7 (=)

u=0.73

log[P(x)]

|
n
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log[x]



e Statistical mechanics
@ Anomalous Lévy diffusion in an optical lattice
@ Fluctuations: how large is large?
@ Ergodicity



Optical lattice

@ Spatially periodic optical potential:

obtained, for instance, by superposition of two
counterpropagating laser beams

= "optical crystal" (band structure, Bragg scattering, ...)

@ Advantages:

— potential is exactly known (no defects)
— can be tuned in a precise way (spacing, amplitude)

o

G

Atomic transport? J




Atomic transport in optical lattice

@ Transport equation for the semiclassical Wigner function:
Dalibard and Cohen-Tannoudji 1989

OW(p,t) 0 8 oW
Drift : K(p) = —H(‘;% — Cooling

[Friction force] (Sisyphus effect)

Diffusion : D(p) = Do + W Heating
[Momentum fluctuations]
@ Range of validity:
— large momentum, p > ik defines semiclassical limit
— small saturation, s < 1 low laser intensity

— large kinetic energy, p?/2m > Uy  allows spatial averaging



Power-law tail distribution in momentum

Stationary momentum distribution:

Do pz} —(ap2)/(2Do)

WS(p):[l—i_Do—FDlpg

Power-law tail: Ws(p) ~ |p|~(@P&)/Po
Exponent can be rewritten as:
(apZ)/Do = Uo/(22ER)
(Up = potential depth, Eg = recoil energy)
— Statistical properties of Ws(p) can be changed:

— from normal statistics for Ug > 66ER

—to Lévy statistics for Ug < 66ER

In fact, Ws(p) = Tsallis distribution Lutz PRA (R) 2003



Lévy statistics and diverging moments
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@ Second moment: (p?) = [dp p?Ws(p)

diverges if Uy < 66ER.

— mean kinetic energy, (Ex) = (p?)/2m, infinite.

@ Fourth moment: (p*) = [dpp*Ws(p)
diverges if Uy < 110ER.

— mean square kinetic energy, (EZ) = (p%)/4m?,
infinite.



Single 2*Mg™ ions in a one—dimensional optical lattice:
Katori et al., PRL 1997

Experimental observation of the divergence of the atomic
kinetic energy




Fluctuations: how large is large?

Statistical properties of rare but extreme events:
@ How tall should one design an embankment so that the
river reaches this level only once in 50 years?

@ How large will be the largest earthquake in Los Angeles in
the next 20 years?

@ How large is the largest atomic momentum in 1000
observations?

Extreme Value Theory = Gumbel 1958 )

P(x) 0.5




Fluctuations: how large is large?

For independent events:

Value xmax = A of the maximum among N realizations that will
not be exceeded with probability p satisfies:

/ dx P (x In(1/|O)
@ for exponential P(x) = e~ A~1n [In(l/p)}
1/a
o for power-law P(x) = x ~(1+e) A~ [7"1(1“/‘))}
Example: P(x) = C (1 +x2)~(1+2)/2 N = 1000 p = 99%
Uo/ER H (0% ‘ A ‘
440 19 2

110 4 27 1.3x 10 ((p*) diverges)
66 2 631 3x10% ((p?) diverges)
44 1 | 313000 10° ((p) diverges)



Motivation: Two recent experiments

@ "Experimental Investigation of Nonergodic Effects in
Subrecoil Laser Cooling" Saubamea et al., PRL 1999

@ "Statistical Aging and Nonergodicity in the Fluorescence of
Single Nanocrystals"  Stockmann et al., PRL 2003

— Lévy statistics induces ergodicity breaking

Question: connection between nonergodicity and diverging
moments?

Advantage of optical lattice:

— Ordinary linear Fokker-Planck equation



Definition:

"Ensemble average and time average of observables are equal
in the infinite-time limit."

(A) = A as t—oo

@ Ensemble average: (Ay = [dpA(p)W (p,t)
in the long-time limit: ~ (A)s = [ dp A(p) Ws(p)

. ) e t
@ Time average : A=1 [ drA(p(r))
Ergodicity in the mean-square sense:

oAt) = (A - <K>>2> 0 when t— o0



Ergodicity breaking: Lutz PRL 2004

Ergodicity depends in general on the observable A(p)

1-(2n+1)D
M:#

for A(p) =p"  oi(t)~t™*  with 5

— o4(t) »0ast—oo onlyif D<Dy=1/(2n+1)

Existence of a noise threshold D, above which ergodicity is
broken J

(rescaled variables @ = pc = 1,D; = 0,Dg = D = 22Eg /Up)



@ Moments of stationary momentum distribution:

(pM = /dp p™ Ws(p)

are finite for D < D/, = 1/(m + 1)

and the divergence of the 2nth moment of the stationary

Direct relationship between the loss of ergodicity for A(p) = p"
momentum distribution J

In particular:

forn=1 (p) #p when (p?) diverges (D = 1/3,Uy = 66ER)



Calculation of o4(t)

A0 = /O dty /0 dtz [[(A(P(12))A(P(12))) — (A(P(12))) (A(P(t2)))]
Two-time correlation function:
APEAPE)) = [ [ dpidp ALAR) Wa(pi. 1.t
Two-point joint probability density function:
Wa(p1,t1; p2,t2) = 'E’o(pl)’wo(pz)(@i'o(pl)wo(pz)
+ /Ooo dk ﬁsk(pl)wk(pz)e‘Ek'“‘tZ')
Finally oZ(t) = 2 [3d7 (t — 1) Cal(r)

With Ca(7) :fooo dk [fdp A(p) ’1[)0(p)’(§)k(p)} ? e BT



Power-law tail distribution in time

@ First passage time distribution:

Divide momentum space in two regions:

— low momentum region p < 1, Ki(p) ~ —p
— high momentum region p > 1, Ka(p) ~ —1/p

First—passage time = time at which the momentum of the
system first exits a certain momentum interval, given that it was
originally in that interval

In the high momentum region:

g2(t) ~t™7 with v=(3D+1)/(2D)

Power-law distribution in time )




Power-law tail distribution in time

@ Moments of the first passage time distribution:

i 0.8 E
<tn> = /dt t" 2(t) % e \\\‘\\,1/
converge for D < D[] = 1/(2n — 1) H i

0.2 C.4 0.6 0.8
Noise strength D

Ergodicity is broken for A(p) = p" when the (n + 1)th moment
of the first passage time distribution in the high—-momentum
region becomes infinite

In particular:

forn=1 (p) #p when (t2) diverges (D = 1/3,Uy = 66ER)



@ Lévy distributions = power-law tail
— describe large fluctuations

@ Strange properties (diverging moments)
— but observed in nature !

@ Direct link between diverging moments and nonergodicity

New statistical physics is needed ! J
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