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Broad distributions

Physical point of view

Many phenomena: well-defined average behavior with
fluctuations around average value

fluctuations described by narrow distributions

ex: Gauss distribution

Other phenomena: properties dominated by fluctuations
(average not important, may not even exist)

fluctuations described by broad distributions

ex: Lévy distributions

"broad"=power-law tail



Broad distributions

Mathematical point of view: Central–limit theorem

SN = X1 + X2 + ...+ XN

Sum of N independent random variables Xi

Case 1: finite second moment 〈X 2
i 〉 <∞

SN → Gauss distribution N →∞

Case 2: divergent second moment 〈X 2
i 〉 → ∞

SN → Lévy distribution N →∞

Stable probability distributions



Lévy distribution

Definition and main properties: Lévy 1937

Characteristic function

ϕ(k) =

∫
dx P(x) e−ikx = e−c|k |α 0 < α ≤ 2

Asymptotic power–law decay

P(x) ∼ 1
|x |1+α

, x →∞ α < 2

Second moment diverges

〈x2〉 =

∫
dx x2 P(x)→∞ α < 2

Scale-free distributions



Physical examples

α = 2 Gauss e−x2/2
√

2π

(Errors in astronomical observations) 1809

α = 1
2 Schrödinger e−1/2x

√
2πx3

(First-passage time distribution) 1915

α = 1 Breit-Wigner 1
π

1
1+x2

(Cross-section of resonant scattering) 1936

α = 3
2 Holtzmark

(Random gravitational force on a star) 1919
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Normal diffusion

Example: small particles in a glass of water Perrin 1909

Irregular, random motion
Brownian motion

Brown 1827

Gaussian dynamics:

Diffusion equation:

∂P
∂t

= D
∂2P
∂x2

Solution:

P(x , t) =
1√

4πDt
e−x2/(4Dt)

Mean-square displacement:

〈x2〉 = 2Dt

linear in time



Transport equations: Gauss

System S in contact with bath B
(temperature T)

Langevin 1908

mẍ + U ′(x) + ηẋ = F (t)

η = friction

F (t) = Gaussian random force (central-limit theorem)

〈F (t)〉 = 0

〈F (t)F (t ′)〉 = 2D δ(t − t ′) D = ηkT



Lévy diffusion

Definition:

mẍ + U ′(x) + ηẋ = F (t)

F (t) = Lévy random force

(central-limit theorem)

Properties:

algebraic tail of force distribution

large fluctuations

long jumps (Lévy flights)

Enhanced diffusion (〈x2〉 → ∞)



Flight of an albatross

Flight-time measurement of 30 albatrosses at Bird Island

Typical trajectories:

Distribution of flight-time intervals:

P(ti) ∼
1

(ti + 1)µ
µ = 1+α ' 2

Power-law distribution

Stanley et al., Nature 1996



Experiment 1: Diffusion in micelles

Ott et al., PRL 1991

Micelles = polymer-like molecules
that break and recombine rapidly

Measurement: intensity of light
emitted by fluorescent atoms after
photobleaching

characteristic function

α = 1.5

Diffusion equation:

Gauss ∂P
∂t = D ∂2P

∂x2 −→ ∂eP
∂t = −Dk2 P̃ −→ P̃(k , t) = e−Dt k2

Lévy ∂P
∂t = D ∂αP

∂|x |α ←−
∂eP
∂t = −D|k |αP̃ ←− P̃(k , t) = e−Dt |k |α



Fractional derivative

Letter from Leibniz to L’Hospital: d1/2

dx1/2 x =? 30.09.1695

dm

dxm xn = (n −m)! xn−m = Γ(n −m + 1) xn−m

m = 1/2,n = 1 d1/2

dx1/2 x = Γ(3/2) x1/2

Riemann-Liouville operator

dα

dxα
F (x)←→ (ik)αF̃ (k) Ex:

dα

dxα
eax = aα eax

Riesz operator

dα

d |x |α
F (x)←→ −|k |αF̃ (k) Ex:

dα

dxα
cos ax = −|a|α cos ax

dα

d |x |α
F (x) =

1
κα

d2

dx2

∫
dy

F (y)

|x − y |α−1 non-local



Experiment 2: 2D rotating flow

Weeks et al., PRL 1993

Rotating tank (water + glycerol)
1.5 Hz

Regime of chaotic advection
chain of vortices

Typical trajectory:

Pdf of duration of flight:

α = 1.3



Experiment 3: Surface diffusion

Senft et al., PRL 1995

Palladium atoms on a tungsten lattice T = 133K

Measurement:
displacement of single
atom on a 1D lattice
(field microscopy)

Low diffusion barrier
longs jumps

(2, 3 or more lattice sites)

α = 1.251, s = 7.4

ϕ(k) = e−|sk|α

Realization of 1D discrete random walk



Experiment 4: Saccadic eye movements
Brockmann and Geisel 2004

Magnitude of visual angle:
0.1◦ < x < 100◦

Pexp(x > 75◦) = 3× 10−7

Pdf of saccadic magnitude
larger than x :

P>(x) =
∫∞

x dx ′ x ′−(1+α)

∼ x−α (α = µ)
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Optical lattice

Spatially periodic optical potential:

obtained, for instance, by superposition of two
counterpropagating laser beams

≡ "optical crystal" (band structure, Bragg scattering, ...)

Advantages:

potential is exactly known (no defects)
can be tuned in a precise way (spacing, amplitude)

Atomic transport?



Atomic transport in optical lattice

Transport equation for the semiclassical Wigner function:
Dalibard and Cohen-Tannoudji 1989

∂W (p, t)
∂t

= − ∂

∂p
[K (p)W ] +

∂

∂p
[D(p)

∂W
∂p

]

Drift : K (p) = − ᾱ p
1+(p/pc)2 Cooling

[Friction force] (Sisyphus effect)

Diffusion : D(p) = D0 + D1
1+(p/pc)2 Heating

[Momentum fluctuations]

Range of validity:
– large momentum, p � ~k defines semiclassical limit
– small saturation, s � 1 low laser intensity

– large kinetic energy, p2/2m� U0 allows spatial averaging



Power-law tail distribution in momentum

Stationary momentum distribution:

Ws(p) =
1
Z

[
1 +

D0

D0 + D1

p2

p2
c

]−(ᾱp2
c )/(2D0)

Power-law tail: Ws(p) ∼ |p|−(ᾱp2
c )/D0

Exponent can be rewritten as:

(ᾱp2
c)/D0 = U0/(22ER)

(U0 = potential depth, ER = recoil energy)

Statistical properties of Ws(p) can be changed:

– from normal statistics for U0 > 66ER

– to Lévy statistics for U0 < 66ER

In fact, Ws(p) = Tsallis distribution Lutz PRA (R) 2003



Lévy statistics and diverging moments

Second moment: 〈p2〉 =
∫

dp p2 Ws(p)

diverges if U0 < 66ER.

mean kinetic energy, 〈EK 〉 = 〈p2〉/2m, infinite.

Fourth moment: 〈p4〉 =
∫

dp p4 Ws(p)

diverges if U0 < 110ER.

mean square kinetic energy, 〈E2
K 〉 = 〈p4〉/4m2,

infinite.



Experiment

Single 24Mg+ ions in a one–dimensional optical lattice:
Katori et al., PRL 1997

Experimental observation of the divergence of the atomic
kinetic energy



Fluctuations: how large is large?

Statistical properties of rare but extreme events:

How tall should one design an embankment so that the
river reaches this level only once in 50 years?

How large will be the largest earthquake in Los Angeles in
the next 20 years?

How large is the largest atomic momentum in 1000
observations?

Extreme Value Theory Gumbel 1958



Fluctuations: how large is large?

For independent events:

Value xmax = λ of the maximum among N realizations that will
not be exceeded with probability p satisfies:∫ ∞

λ
dx P(x) ' ln(1/p)

N

for exponential P(x) = e−x λ ∼ ln
[

N
ln(1/p)

]
for power-law P(x) = x−(1+α) λ ∼

[ N
ln(1/p)

]1/α

Example: P(x) = C (1 + x2)−(1+α)/2 N = 1000 p = 99%

U0/ER α λ

440 19 2
110 4 27 1.3× 10 (〈p4〉 diverges)
66 2 631 3× 102 (〈p2〉 diverges)
44 1 313 000 105 (〈p〉 diverges)



Ergodicity

Motivation: Two recent experiments

"Experimental Investigation of Nonergodic Effects in
Subrecoil Laser Cooling" Saubamea et al., PRL 1999

"Statistical Aging and Nonergodicity in the Fluorescence of
Single Nanocrystals" Stockmann et al., PRL 2003

Lévy statistics induces ergodicity breaking

Question: connection between nonergodicity and diverging
moments?

Advantage of optical lattice:

Ordinary linear Fokker-Planck equation



Ergodicity

Definition:

"Ensemble average and time average of observables are equal
in the infinite-time limit."

〈A〉 = A as t →∞

Ensemble average: 〈A〉 =
∫

dp A(p) W (p, t)

in the long–time limit: 〈A〉s =
∫

dp A(p) Ws(p)

Time average : A = 1
t

∫ t
0 dτ A(p(τ))

Ergodicity in the mean-square sense:

σ2
A(t) = 〈

(
A − 〈A 〉

)2
〉 → 0 when t →∞



Ergodicity

Ergodicity breaking: Lutz PRL 2004

Ergodicity depends in general on the observable A(p)

for A(p) = pn σ2
A(t)∼ t−µ with µ =

1− (2n + 1)D
2D

σ2
A(t)→ 0 as t →∞ only if D < Dn = 1/(2n + 1)

Existence of a noise threshold Dn above which ergodicity is
broken

(rescaled variables ᾱ = pc = 1, D1 = 0, D0 = D = 22ER/U0)



Ergodicity

Moments of stationary momentum distribution:

〈pm〉 =

∫
dp pm Ws(p)

are finite for D < D′
m = 1/(m + 1)

Direct relationship between the loss of ergodicity for A(p) = pn

and the divergence of the 2nth moment of the stationary
momentum distribution

In particular:

for n = 1 〈p〉 6= p when 〈p2〉 diverges (D = 1/3,U0 = 66ER)



Calculation of σ2
A(t)

σ2
A(t) =

1
t2

∫ t

0
dt1

∫ t

0
dt2

[
[〈A(p(t1))A(p(t2))〉 − 〈A(p(t1))〉 〈A(p(t2))〉

]
Two-time correlation function:

〈A(p(t1))A(p(t2))〉 =

∫ ∫
dp1dp2 A(p1)A(p2) W2(p1, t1; p2, t2)

Two-point joint probability density function:

W2(p1, t1; p2, t2) = ψ0(p1)ψ0(p2)
(
ψ0(p1)ψ0(p2)

+

∫ ∞

0
dk ψk (p1)ψk (p2) e−Ek |t1−t2|

)
Finally σ2

A(t) = 2
t2

∫ t
0 dτ (t − τ) CA(τ)

With CA(τ) =
∫∞

0 dk
[ ∫

dp A(p)ψ0(p)ψk (p)
]2

e−Ek τ



Power-law tail distribution in time

First passage time distribution:

Divide momentum space in two regions:

– low momentum region p < 1, K1(p) ∼ −p

– high momentum region p > 1, K2(p) ∼ −1/p

First–passage time = time at which the momentum of the
system first exits a certain momentum interval, given that it was
originally in that interval

In the high momentum region:

g2(t) ∼ t−γ with γ = (3D + 1)/(2D)

Power-law distribution in time



Power-law tail distribution in time

Moments of the first passage time distribution:

〈tn〉 =

∫
dt tn g2(t)

converge for D < D′′
n = 1/(2n − 1)

Ergodicity is broken for A(p) = pn when the (n + 1)th moment
of the first passage time distribution in the high–momentum

region becomes infinite

In particular:

for n = 1 〈p〉 6= p when 〈t2〉 diverges (D = 1/3,U0 = 66ER)



Summary

Lévy distributions = power-law tail

describe large fluctuations

Strange properties (diverging moments)

but observed in nature !

Direct link between diverging moments and nonergodicity

New statistical physics is needed !
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