Anomalous Lévy diffusion: From the flight of an albatross to optical lattices

Eric Lutz Abteilung für Quantenphysik, Universität Ulm

Regensburg, 27th October 2004

Outline

- Broad distributions
- Central–limit theorem
- Physical examples

2 Lévy diffusion

- Normal diffusion
- Anomalous diffusion (fractional derivative)
- Experimental observations

3 Statistical mechanics

- Anomalous Lévy diffusion in an optical lattice
- Fluctuations: how large is large?
- Ergodicity

Physical point of view

- Many phenomena: well-defined average behavior with fluctuations around average value
 - → fluctuations described by narrow distributions

ex: Gauss distribution

- Other phenomena: properties dominated by fluctuations (average not important, may not even exist)
 - → fluctuations described by broad distributions

ex: Lévy distributions

"broad"=power-law tail

Mathematical point of view: Central-limit theorem

$$\mathbf{S}_N = \mathbf{X}_1 + \mathbf{X}_2 + \ldots + \mathbf{X}_N$$

Sum of N independent random variables X_i

- Case 1: finite second moment $\langle X_i^2 \rangle < \infty$ $S_N \rightarrow$ Gauss distribution $N \rightarrow \infty$
- Case 2: divergent second moment $\langle X_i^2 \rangle \to \infty$ $S_N \to L$ évy distribution $N \to \infty$

Stable probability distributions

Lévy distribution

Definition and main properties:

Lévy 1937

• Characteristic function

$$\varphi(k) = \int dx P(x) e^{-ikx} = e^{-c|k|^{\alpha}} \qquad 0 < \alpha \le 2$$

Asymptotic power–law decay

$$P(x) \sim rac{1}{|x|^{1+lpha}}, \qquad x o \infty \qquad \qquad lpha < 2$$

Second moment diverges

$$\langle x^2 \rangle = \int dx \, x^2 \, P(x) \to \infty \qquad \qquad \alpha < 2$$

Scale-free distributions

Physical examples

$$\alpha = 2$$
 Gauss $\frac{e^{-x^2}}{\sqrt{2}}$

(Errors in astronomical observations) 1809

 $\alpha = \frac{1}{2}$ Schrödinger $\frac{e^{-1/2x}}{\sqrt{2\pi x^3}}$ (First-passage time distribution) 1915

 $\alpha = 1$ Breit-Wigner $\frac{1}{\pi} \frac{1}{1+x^2}$

(Cross-section of resonant scattering) 1936

 $\alpha = \frac{3}{2}$ Holtzmark

(Random gravitational force on a star) 1919

Outline

Lévy distributions

- Broad distributions
- Central–limit theorem
- Physical examples

2 Lévy diffusion

- Normal diffusion
- Anomalous diffusion (fractional derivative)
- Experimental observations

3 Statistical mechanics

- Anomalous Lévy diffusion in an optical lattice
- Fluctuations: how large is large?
- Ergodicity

Normal diffusion

Example: small particles in a glass of water

Perrin 1909

Irregular, random motion → Brownian motion Brown 1827 • Gaussian dynamics:

Diffusion equation:

$$\frac{\partial P}{\partial t} = D \frac{\partial^2 P}{\partial x^2}$$

Solution:

$$P(x,t) = \frac{1}{\sqrt{4\pi Dt}} e^{-x^2/(4Dt)}$$

• Mean-square displacement:

$$\langle x^2 \rangle = 2Dt$$

linear in time

Transport equations: Gauss

System S in contact with bath B (temperature T)

Langevin 1908

$$m\ddot{\mathbf{x}} + U'(\mathbf{x}) + \eta \dot{\mathbf{x}} = F(t)$$

 $\eta =$ friction

F(t) = Gaussian random force (central-limit theorem) $\langle F(t) \rangle = 0$ $\langle F(t)F(t') \rangle = 2D \,\delta(t - t')$ $D = \eta kT$

Lévy diffusion

• Definition:

$$m\ddot{\mathbf{x}} + U'(\mathbf{x}) + \eta \dot{\mathbf{x}} = F(t)$$

F(t) = Lévy random force

(central-limit theorem)

• Properties:

algebraic tail of force distribution

- large fluctuations
- Iong jumps (Lévy flights)

Flight of an albatross

Flight-time measurement of 30 albatrosses at Bird Island

Typical trajectories:

Distribution of flight-time intervals:

$$P(t_i) \sim rac{1}{(t_i+1)^{\mu}} \qquad \mu = 1+lpha \simeq 2$$

Power-law distribution

Stanley et al., Nature 1996

Experiment 1: Diffusion in micelles

Ott et al., PRL 1991

Micelles = polymer-like molecules that break and recombine rapidly

Measurement: intensity of light emitted by fluorescent atoms after photobleaching

characteristic function

Diffusion equation:

Gauss
$$\frac{\partial P}{\partial t} = D \frac{\partial^2 P}{\partial x^2} \longrightarrow \frac{\partial \widetilde{P}}{\partial t} = -Dk^2 \,\widetilde{P} \longrightarrow \widetilde{P}(k,t) = e^{-Dt \,k^2}$$

Lévy $\frac{\partial P}{\partial t} = D \frac{\partial^{\alpha} P}{\partial |x|^{\alpha}} \longleftarrow \frac{\partial \widetilde{P}}{\partial t} = -D|k|^{\alpha} \widetilde{P} \longleftrightarrow \widetilde{P}(k,t) = e^{-Dt \,|k|^{\alpha}}$

Fractional derivative

- -----

• Letter from Leibniz to L'Hospital: $\frac{d^{1/2}}{dx^{1/2}}x = ?$ 30.09.1695

$$\frac{d^m}{dx^m}x^n = (n-m)! x^{n-m} = \Gamma(n-m+1) x^{n-m}$$

$$m = 1/2, n = 1 \longrightarrow \frac{d^{1/2}}{dx^{1/2}} x = \Gamma(3/2) x^{1/2}$$

Riemann-Liouville operator

$$\frac{d^{\alpha}}{dx^{\alpha}}F(x)\longleftrightarrow (ik)^{\alpha}\widetilde{F}(k) \qquad \text{Ex:} \ \frac{d^{\alpha}}{dx^{\alpha}}e^{ax}=a^{\alpha}\,e^{ax}$$

Riesz operator

$$\frac{d^{\alpha}}{d|x|^{\alpha}}F(x) \longleftrightarrow -|k|^{\alpha}\widetilde{F}(k) \qquad \text{Ex:} \quad \frac{d^{\alpha}}{dx^{\alpha}}\cos ax = -|a|^{\alpha}\cos ax$$
$$\frac{d^{\alpha}}{d|x|^{\alpha}}F(x) = \frac{1}{\kappa_{\alpha}}\frac{d^{2}}{dx^{2}}\int dy \frac{F(y)}{|x-y|^{\alpha-1}} \qquad \rightarrow \text{ non-local}$$

Experiment 2: 2D rotating flow

Rotating tank (water + glycerol) 1.5 Hz

Regime of chaotic advection

chain of vortices

Weeks et al., PRL 1993

Typical trajectory:

Pdf of duration of flight:

 $\alpha = 1.3$

Senft et al., PRL 1995

Palladium atoms on a tungsten lattice T = 133K

$$\alpha = 1.251, s = 7.4$$

- Measurement: displacement of single atom on a 1D lattice (field microscopy)
- Low diffusion barrier
 longs jumps
 (2, 3 or more lattice sites)

$$\varphi(\mathbf{k}) = \mathbf{e}^{-|\mathbf{s}\mathbf{k}|^{\boldsymbol{\alpha}}}$$

Realization of 1D discrete random walk

Experiment 4: Saccadic eye movements

Brockmann and Geisel 2004

 Magnitude of visual angle: 0.1° < x < 100°

$$P_{exp}(x>75^\circ)=3 imes10^{-7}$$

• Pdf of saccadic magnitude larger than *x*:

$$\begin{array}{l} P_{>}(x) = \int_{x}^{\infty} dx' \, x'^{-(1+\alpha)} \\ \sim x^{-\alpha} \quad (\alpha = \mu) \end{array}$$

Outline

Lévy distributions

- Broad distributions
- Central–limit theorem
- Physical examples
- 2 Lévy diffusion
 - Normal diffusion
 - Anomalous diffusion (fractional derivative)
 - Experimental observations

3 Statistical mechanics

- Anomalous Lévy diffusion in an optical lattice
- Fluctuations: how large is large?
- Ergodicity

• Spatially periodic optical potential:

obtained, for instance, by superposition of two counterpropagating laser beams

 \equiv "optical crystal" (band structure, Bragg scattering, ...)

Advantages:

- potential is exactly known (no defects)
- → can be tuned in a precise way (spacing, amplitude)

Atomic transport?

Atomic transport in optical lattice

• Transport equation for the semiclassical Wigner function:

Dalibard and Cohen-Tannoudji 1989

$$\frac{\partial W(p,t)}{\partial t} = -\frac{\partial}{\partial p} [\mathcal{K}(p)W] + \frac{\partial}{\partial p} [\mathcal{D}(p)\frac{\partial W}{\partial p}]$$
Drift : $\mathcal{K}(p) = -\frac{\bar{\alpha}p}{1+(p/p_c)^2} \longrightarrow \text{Cooling}$
[Friction force] (Sisyphus effect)
Diffusion : $\mathcal{D}(p) = \mathcal{D}_0 + \frac{\mathcal{D}_1}{1+(p/p_c)^2} \longrightarrow \text{Heating}$
[Momentum fluctuations]

• Range of validity:

- large momentum, $p \gg \hbar k$
- small saturation, $s \ll 1$
- large kinetic energy, $p^2/2m\gg U_0$

defines semiclassical limit low laser intensity allows spatial averaging

Power-law tail distribution in momentum

Stationary momentum distribution:

$$W_{s}(p) = rac{1}{Z} \Big[1 + rac{D_{0}}{D_{0} + D_{1}} rac{p^{2}}{p_{c}^{2}} \Big]^{-(ar{lpha}p_{c}^{2})/(2D_{0})}$$

Power-law tail: $W_s(p) \sim |p|^{-(\bar{\alpha}p_c^2)/D_0}$

Exponent can be rewritten as:

$$(\bar{\alpha}\boldsymbol{p}_{c}^{2})/\boldsymbol{D}_{0}=\boldsymbol{U}_{0}/(22\boldsymbol{E}_{R})$$

(U_0 = potential depth, E_R = recoil energy)

- \rightarrow Statistical properties of $W_s(p)$ can be changed:
- from normal statistics for $U_0 > 66E_R$
- to Lévy statistics for $U_0 < 66 E_R$

In fact, $W_s(p) = T$ sallis distribution

Lutz PRA (R) 2003

Lévy statistics and diverging moments

- Second moment: $\langle p^2 \rangle = \int dp \, p^2 \, W_s(p)$ diverges if $U_0 < 66 E_R$.
 - → mean kinetic energy, $\langle E_K \rangle = \langle p^2 \rangle / 2m$, infinite.

• Fourth moment: $\langle p^4 \rangle = \int dp \, p^4 \, W_s(p)$ diverges if $U_0 < 110 E_R$.

 \rightarrow mean square kinetic energy, $\langle E_K^2 \rangle = \langle p^4 \rangle / 4m^2$, infinite.

Single ${}^{24}Mg^+$ ions in a one–dimensional optical lattice:

Katori et al., PRL 1997

Experimental observation of the divergence of the atomic kinetic energy

Fluctuations: how large is large?

Statistical properties of rare but extreme events:

- How tall should one design an embankment so that the river reaches this level only once in 50 years?
- How large will be the largest earthquake in Los Angeles in the next 20 years?
- How large is the largest atomic momentum in 1000 observations?

For independent events:

Value $x_{max} = \lambda$ of the maximum among *N* realizations that will not be exceeded with probability *p* satisfies:

$$\int_{\lambda}^{\infty} dx \, P(x) \simeq \frac{\ln(1/p)}{N}$$

• for exponential
$$P(x) = e^{-x}$$
 $\lambda \sim \ln\left[\frac{N}{\ln(1/p)}\right]$
• for power-law $P(x) = x^{-(1+\alpha)}$ $\lambda \sim \left[\frac{N}{\ln(1/p)}\right]^{1/\alpha}$
Example: $P(x) = C(1+x^2)^{-(1+\alpha)/2}$ $N = 1000$ $p = 99\%$
 $\frac{U_0/E_R}{440}$ $\frac{\alpha}{19}$ $\frac{\lambda}{110}$ 4 27 1.3×10 $(\langle p^4 \rangle \text{ diverges})$
 66 2 631 3×10^2 $(\langle p^2 \rangle \text{ diverges})$
 44 1 $313\,000$ 10^5 $(\langle p \rangle \text{ diverges})$

Motivation: Two recent experiments

- "Experimental Investigation of Nonergodic Effects in Subrecoil Laser Cooling" Saubamea et al., PRL 1999
- "Statistical Aging and Nonergodicity in the Fluorescence of Single Nanocrystals" Stockmann et al., PRL 2003
- Lévy statistics induces ergodicity breaking

Question: connection between nonergodicity and diverging moments?

Advantage of optical lattice:

Ordinary linear Fokker-Planck equation

Ergodicity

Definition:

"Ensemble average and time average of observables are equal in the infinite-time limit."

$$\langle A \rangle = \overline{A}$$
 as $t \to \infty$

- Ensemble average: $\langle A \rangle = \int dp A(p) W(p, t)$ in the long-time limit: $\langle A \rangle_s = \int dp A(p) W_s(p)$
- Time average : $\overline{A} = \frac{1}{t} \int_0^t d\tau A(p(\tau))$

Ergodicity in the mean-square sense:

$$\sigma_A^2(t) = \langle \left(\overline{A} - \langle \overline{A}
ight)^2
angle o 0$$
 when $t o \infty$

Ergodicity breaking:

Lutz PRL 2004

Ergodicity depends in general on the observable A(p)

for
$$A(p) = p^n$$
 $\sigma_A^2(t) \sim t^{-\mu}$ with $\mu = \frac{1 - (2n+1)D}{2D}$

$$\rightarrow \sigma_A^2(t) \rightarrow 0 \text{ as } t \rightarrow \infty \quad \text{only if} \quad D < D_n = 1/(2n+1)$$

Existence of a noise threshold D_n above which ergodicity is broken

(rescaled variables $\bar{\alpha} = \rho_c = 1, D_1 = 0, D_0 = D = 22E_R/U_0$)

• Moments of stationary momentum distribution:

$$\langle p^m
angle = \int dp \, p^m \, W_{s}(p)$$

are finite for $D < D'_m = 1/(m+1)$

Direct relationship between the loss of ergodicity for $A(p) = p^n$ and the divergence of the 2*n*th moment of the stationary momentum distribution

In particular:

for
$$n = 1$$
 $\langle p \rangle \neq \overline{p}$ when $\langle p^2 \rangle$ diverges $(D = 1/3, U_0 = 66E_R)$

Calculation of $\sigma_A^2(t)$

$$\sigma_{A}^{2}(t) = \frac{1}{t^{2}} \int_{0}^{t} dt_{1} \int_{0}^{t} dt_{2} \Big[\langle A(p(t_{1}))A(p(t_{2})) \rangle - \langle A(p(t_{1})) \rangle \langle A(p(t_{2})) \rangle \Big]$$

Two-time correlation function:

$$\langle A(p(t_1))A(p(t_2))\rangle = \int \int dp_1 dp_2 A(p_1)A(p_2) W_2(p_1, t_1; p_2, t_2)$$

Two-point joint probability density function:

$$W_2(p_1, t_1; p_2, t_2) = \psi_0(p_1)\psi_0(p_2) \Big(\psi_0(p_1)\psi_0(p_2)\Big)$$

$$+\int_0^\infty dk \ \psi_k(p_1)\psi_k(p_2) \ \mathbf{e}^{-E_k|t_1-t_2|} \Big)$$

Finally

 $\sigma_{\mathcal{A}}^{2}(t) = \frac{2}{t^{2}} \int_{0}^{t} d\tau \left(t - \tau\right) C_{\mathcal{A}}(\tau)$ $C_A(\tau) = \int_0^\infty dk \left[\int dp A(p) \psi_0(p) \psi_k(p) \right]^2 e^{-E_k \tau}$ With

• First passage time distribution:

Divide momentum space in two regions:

- low momentum region p < 1, $K_1(p) \sim -p$
- high momentum region p > 1, $K_2(p) \sim -1/p$

First–passage time = time at which the momentum of the system first exits a certain momentum interval, given that it was originally in that interval

In the high momentum region:

$$g_2(t) \sim t^{-\gamma}$$
 with $\gamma = (3D+1)/(2D)$

Power-law distribution in time

Power-law tail distribution in time

Moments of the first passage time distribution:

$$\langle t^n \rangle = \int dt \, t^n \, g_2(t)$$

converge for $D < D''_n = 1/(2n-1)$

Ergodicity is broken for $A(p) = p^n$ when the (n + 1)th moment of the first passage time distribution in the high–momentum region becomes infinite

In particular:

for n = 1 $\langle p \rangle \neq \overline{p}$ when $\langle t^2 \rangle$ diverges $(D = 1/3, U_0 = 66E_R)$

Lévy distributions = power-law tail

→ describe large fluctuations

• Strange properties (diverging moments)

but observed in nature !

Direct link between diverging moments and nonergodicity

New statistical physics is needed !