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1. Semiconductor Technology Scaling
– Improving Traditional TCAD

•  Feature size shrinks on average by 12% p.a.;   speed ∝ size

•  Chip size increases on average by 2.3% p.a.

Overall performance: ↑ by ~55% p.a. or 
~ doubling every 18 months (“Moore’ s Law”)
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     Role of Ab-Initio Methods on Nanoscale

1. Improving traditional (continuum) process 
modeling to include nanoscale effects

– Identify relevant equations & parameters (“physics”)

– Basis for atomistic process modeling 
(Monte Carlo, MD)

2. Nanoscale characterization
= Combination of experiment & ab-initio calculations

3. Atomic-level process + transport modeling
= structure-property relationship (“ultimate goal”)
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1. “Nanoscale” Problems – Traditional MOS

What you expect:
Intrinsic diffusion

800 °C
20 min

800 °C
1 month

( )BB
B CD

dt
dC ∇∇=

800 °C
20 min

What you get:

•fast diffusion 
(TED)

•immobile peak

•segregation

Active B¯
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Bridging the Length Scales: Ab-Initio to Continuum
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Need to calculate: ? Diffusion prefactors (Uberuaga et al., phys. stat. sol. 02) 
? Migration barriers (Windl et al., PRL 99)

? Capture radii (Beardmore et al., Proc. ICCN 02)

? Binding energies (Liu et al., APL 00)
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      2. The Nanoscale Characterization Problem

• Traditional characterization techniques, e.g.:
– SIMS (average dopant distribution)

– TEM (interface quality; atomic-column 
information)

• Missing: “Single-atom” information
– Exact interface (contact) structure (previous; next)

– Atom-by-atom dopant distribution (strong VT shifts)

• New approach: atomic-scale characterization 
(TEM) plus modeling
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Abrupt vs. Diffuse Interface
Abrupt Graded

Buczko et al.

How do we know? What does it mean?
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1.4Å
As Ga
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Electron Energy-Loss Spectrum

 00

10

20

30

40

50

60

70

energy loss (eV)

in
te

ns
it

y 
( a

.u
.)

ZERO
LOSS

silicon with

surface oxide and

carbon contamination

LOSS
VALENCE

x25

optical properties

and

electronic structure

concentration

CORE
LOSS

bonding and

oxidation state

100 200 300 400 500

x500 x5000

Si-L

C-K

O-K

VB

CB

Core hole
⇒ Z+1



Computational Materials Science and Engineering

Theoretical Methods

ab initio Density Functional Theory
plus LDA or GGA

implemented within

pseudopotential 

and

full-potential (all electron) methods
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Calculated Si-L2,3 Edges at Si/SiO2
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Combining Theory and Experiment
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Calculation of EELS Spectra from Band Structure
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Combining Theory and Experiment
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⇒ “Measure” atomic structure of amorphous materials.
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  Band Line-Up Si/SiO2

⇒ Abrupt would be better!

Is there an abrupt 
interface?
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Lopatin et al., submitted to PRL

Real-space band structure:

•Calculate electron DOS 
projected on atoms

•Average layers
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Interfaces with Different Abruptness:
Si/SiO2 vs. Si:Ge/SiO2 

• Yes!

• Ge-implanted sample 
from ORNL (1989).

• Sample history:

•  Ge implanted into Si 
(1016 cm-2, 100 keV)

•  ~ 800 oC  oxidation

Initial Ge distribution

~120 nm

~4%
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• Ge after 
oxidation 
packed into 
compact layer,
~ 4-5 nm wide

Z-Contrast Ge/SiOZ-Contrast Ge/SiO22 Interface Interface

  SiSi  SiO2 GeGe
  11   22   33   44   55   66 nmnm
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• peak ~100% Ge
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 Kinetic Monte Carlo Ox. Modeling

Simulation Algorithm for oxidation of Si:Ge:

– Si lattice with O added between Si atoms

– Addition of O atoms and hopping of Ge positions 
by KMC* 

– First-principles calculation of simplified energy 
expression as function of bonds:

[ ]
SiOGeSiOSiGeOGe

SiGeGeGeSiSi

058948077

472232712eV

n.n.n.

n.n.n. = E

−−−
−−−

*Hopping rate Ge: McVay, PRB 9 (74); ox rate SiGe: Paine, JAP 70 (91). 
Windl et al., J. Comput. Theor. Nanosci.
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Initial Ge distribution 25 min, 1000 oC

Monte Carlo Results - Profiles

oxide
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S. Lopatin et al., Microscopy and Microanalysis, San Antonio, 2003.
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  Band Line-Up Si/SiO2 & Ge/SiO2

Lopatin et al., submitted to PRL
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Conclusions 2

• Atomic-scale characterization is possible: 
Ab-initio methods in conjunction with Z-contrast & 
EELS can resolve interface structure.

• Atomically sharp Ge/SiO2 interface observed

• Reliable structure-property relationship for well 
characterized structure (band line-up)

• Abrupt is good

• Sharp interface from Ge-O repulsion (“snowplowing”)
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Wind et al.,  JVST B, 2002.

Possibilities:

• Carbon nanotubes (CNTs) as 
channels in field effect transistors

• Single molecules to function as 
devices

• Molecular wires to connect device 
molecules

• Single-molecule circuits where 
devices and interconnects are 
integrated into one large molecule

3. Process and Device Simulation of 
Molecular Devices 

300 nm
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  Concept of Ab-Initio Device Simulation

Zhang, Fonseca, Demkov, Phys Stat Sol (b), 233, 70 (2002)

Using

• Landauer formula for Ip(V)

• Lippmann-Schwinger equation, Tlr(E) = 〈 lV + VGV r 〉

• Rigid-band approximation T(E,V) = T(E + ηV) with η  = 0.5
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Tlr from Local-Orbital Hamiltonian
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• Tlr(E) can be constructed from matrix elements of DFT tight-

binding Hamiltonian H. Pseudo atomic orbitals: ψ (r > rc)=0.

• We use matrix-element output from SIESTA.
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The Molecular Transport ProblemThe Molecular Transport Problem
I Expt.

Theor.Strong discrepancy expt.-theory!

Suspected Problems:

• Contact formation molecule/lead 
not understood

• Influence of contact structure on 
electronic properties
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What is “Process Modeling” for 
Molecular Devices?

• Contact formation: need to follow influence of temperature 
etc. on evolution of contact.

• Molecular level: 
atom by atom 
⇒ Molecular Dynamics

• Problem:
MD may never get to 
relevant time scales
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* 1-week simulation of 1000-atom metal 

   system, EAM potential
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• Possible solution: accelerated dynamics methods.

• Principle: run for trun. Simulated time: tsim = n trun,    n  >> 1

• Possible methods:

• Hyperdynamics (1997)

• Parallel Replica Dynamics (1998)

• Temperature Accelerated Dynamics (2000)

Accelerated Molecular Dynamics 
Methods

Voter et al., Annu. Rev. Mater. Res. 32, 321 (2002).
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Concept:

• Raise temperature of system to make events occur more 
frequently.  Run several (many) times.

• Pick randomly event that should have occurred first at the 
lower temperature.

Basic assumption (among others):

• Harmonic transition state theory (Arrhenius behavior) w/
∆E from Nudged Elastic Band Method (see above). 

     Temperature Accelerated Dynamics (TAD)

Voter et al., Annu. Rev. Mater. Res. 
32, 321 (2002).
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Carbon Nanotube on Pt

• From work function, Pt possible lead candidate.

• Structure relaxed with VASP.

• Very small relaxations of Pt suggest little wetting 
between CNT and Pt (⇒ bad contact!?).
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•Nordlund empirical potential

•Not much interaction observed ⇒ study different system.

Movie: Carbon Nanotube on Pt
Temperature-Accelerated MD at 300 K

tsim = 200 µ s
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Carbon Nanotube on Ti

•Large relaxations of Ti suggest strong reaction 
(wetting) between CNT and Ti.

•Run ab-initio TAD for CNT on Ti (no empirical 
potential available).

•Very strong reconstruction of contacts observed.
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TAD MD for CNT/Ti

600 K, 0.8 ps
tsim (300 K) = 0.25 µ s

CNT bonds break on 
top of Ti, very different 

contact structure.

New structure 10 eV 
lower in energy.
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Contact Dependence of
I-V Curve for CNT on Ti

Difference 15-20%
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Relaxed CNT on Ti “Inline Structure”

• In real devices, CNT embedded into 
contact. Maybe major conduction 
through ends of CNT?
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Contact Dependence of
I-V Curve for CNT on Ti

Inline structure has 10x conductivity of on-top structure
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• Currently major challenge for molecular devices: contacts 

• Contact formation: “Process” modeling on MD basis.

• Accelerated MD

• Empirical potentials instead of ab initio when possible

• Major pathways of current flow through ends of CNT

Conclusions
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Left:
•  Ti below 25 a.u. and above 55 
a.u.
•  CNT (armchair (3,3), 12 C planes) 
in the middle

Right:
•  Ti below 10 a.u. and above 60 
a.u.
•  CNT (3,3), 19 C planes, in 
contact with Ti between 15 a.u. and 
30 a.u. and between 45 a.u. and 
60 a.u.
•  CNT on vacuum between 30 a.u. 
and 45 a.u. 



Minimal basis set used (SZ); I did a separate calculation for an isolated CNT
(3,3) and obtained a band gap of 1.76 eV (SZ) and 1.49 eV (DZP). Armchair 
CNTs are metallic; to close the gap we need kpts in the z-direction.



Notice the difference in the y-
axis. The X structure (below) 
carries a current which is about 
one order of magnitude smaller 
than the CNT inline with the 
contacts (left) 

The main peak in the X structure is 
located at ~5 V, which is close to 
the value from the inline structure 
(~5.5 V). This indicates that the 
qualitative features in the 
conductance derive from the CNT 
while the magnitude of the 
conductance is set by the contacts. 
The extra peaks seen on the right 
may be due to incomplete 
relaxation.



Notice the difference in the y-
axis. The X structure (below) 
carries a current which is about 
one order of magnitude smaller 
than the CNT inline with the 
contacts (left) 

The main peak in the X structure is 
located at ~5 V, which is close to 
the value from the inline structure 
(~5.5 V). This indicates that the 
qualitative features in the 
conductance derive from the CNT 
while the magnitude of the 
conductance is set by the contacts. 
The extra peaks seen on the right 
may be due to incomplete 
relaxation.
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PDOS for the relaxed CNT in line with contacts. The two curves correspond 
to projections on atoms far away from the two interfaces. A (3,3) CNT is 
metallic, still there is a gap of about 4 eV. Does the gap above result from 
interactions with the slabs or from lack of kpts along z? This question is not 
so important since the Fermi level is deep into the CNT valence band.



Previous calculations and new ones. Black is unrelaxed but converged with 
Siesta while blue is relaxed with Vasp and converged with Siesta. From your 
results it looks like you started from an unrelaxed structure and is trying to 
converge it. 



C
u

rr
en

t 
(A

)

Bias (V)

Previous calculations and new ones. Black is relaxed with Vasp and 
converged with Siesta. 



MD smoothes out most of 
the conductance peaks 
calculated without MD. 
However, the overall effect 
of MD does not seem to be 
very important. That is an 
important result because it 
tells us that the Schottky 
barrier is extremely 
important for the device 
characteristics but interface 
defects are not. Transport 
seems to average out the 
defects generated with MD. 
Notice in the lower plot that 
there is no exponential 
regime, indicating ohmic 
behavior. Slide 7 shows 
that for the aligned 
structure the tunneling 
regime is very clear up to 
~6 V.
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Ab Initio: Diffusion 
parameters, stress 
dependence, etc.

Device modeling
compare modeled
results to specs.
Met ⇒ done,
otherwise goto 1.

Diffusion Solver
- read in implant
- solve diffusion

Relate atomistic
calculations to 
macroscopic eqs.

Physical Multiscale Process Modeling
REED-MD 
Implant: 
“ab-initio” 
modeling 
(3D dopant 
distribution
)

2

3

5
4

1
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MOSFET Scaling: Ultrashallow Junctions

*P. Packan, MRS Bulletin

Higher Doping

To get enough 
current with shallow 
source & drain

Shallower Implant

Better insulation (off)
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Implantation & Diffusion

Channel

*Hoechbauer, Nastasi, Windl

•  Dopants inserted by ion implantation 
  ⇒ damage 

•  Damage healed by annealing

•  During annealing, dopants diffuse fast 
  (assisted by defects) 
  ⇒ important to optimize anneal

Source Drain

Gate 

*
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● Coordinates and types of group of atoms
   (molecule, crystal, crystal + defect, etc.)

● Solve quantum mechanical Schrödinger equation,
    Hψ = Eψ ⇒ total energy of system
● Calculate forces on atoms, update positions
    ⇒ equilibrium configuration 
    ⇒ thermal motion (MD), 
         vibrational properties 

Input:

Output:

H O
H

H
O

H

Ab-Initio Calculations – Standard Codes
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“real”

DFT

effective potential

Ab-Initio Calculations

• “Everybody’s” choice: 
Ab-initio code VASP (Technische Universität Wien), LDA and GGA

• Error from effective potential corrected by (exchange-)correlation term

• Local Density Approximation (LDA)

• Generalized-Gradient Approximations (GGAs)

• Others (“Exact exchange”, “hybrid functionals” etc.)

• “Correct one!?” 
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How To Find Migration Barriers I

∆E ~ 0.4 eV ∆E

E
ne

rg
y

•  “Easy”: Can guess final state & diffusion path (e.g. vacancy diffusion)
               “By hand”, “drag” method.  Extensive use in the past.

Unreliable!

Fails even for exchange N-V in Si (“detour” lowers barrier by ~2 eV)

drag

real
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How To Find Migration Barriers II
New reliable search methods for diffusion paths exist like: 
•  Nudged elastic band method” (Jónsson et al.). Used in this work.
•  Dimer method (Henkelman et al.)
•  MD (usually too slow); but can do “accelerated” MD (Voter)
•  All in VASP, easy to use.

a           b           c
( ) ( )Law sHooke'

2

1 2

atoms all

spring

springspring
chain

b
j

a
jab

bcabcba

xxkE

EEEEEE

−=

++++=

∑

Elastic band method: 
Minimize energy of all snapshots plus 
spring terms, Echain:

Initial  Saddle   Final
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• Vineyard theory
• From vibrational 
frequencies

Calculation of Diffusion Prefactors

freqs.phonon   , const.

bygiven Prefactor

1
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1
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j
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A               S             B
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S

B

• Phonon calculation in VASP
• Download our scripts from Johnsson group website (UW)
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W. Windl, M.M. Bunea, R. Stumpf, S.T. Dunham, and M.P. Masquelier,
Proc. MSM99 (Cambridge, MA, 1999), p. 369; MRS Proc. 568, 91 (1999); Phys. Rev. Lett. 83, 4345 (1999).

Reason for TED: Implant Damage

NEBM-DFT: Interstitial assisted two-step mechanism:

Intrinsic diffusion:
Create interstitial, B captures interstitial, diffuse together
⇒ Diffusion barrier: Eform(I) – Ebind(BI) + Emig(BI) 
                                    4 eV         1 eV          0.6 eV ~ 3.6 eV

After implant:
Interstitials for “free” ⇒ transient enhanced diffusion
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 Reason for Deactivation – Si-B Phase Diagram
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*S. Solmi et al., JAP 88, 4547 (2000).

Deactivation – Sub-Microscopic Clusters
Experimental findings:
• Structures too small to be seen in EM ⇒ only “few” atoms

•  New phase nucleates, but decays quickly
• Clustering dependent on B concentration and 

interstitial concentration
   ⇒ formation of BmIn clusters postulated; 
        experimental estimate: m / n ~ 1.5*

⇒ Approach:
• Calculate clustering energies from first principles up to 

“max.” m, n
• Build continuum or atomistic kinetic-Monte Carlo model 
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Cluster Formation – Reaction Barriers

Dimer study of the 
breakup of B3I2 into B2I 
and BI showed:*
•BIC reactions diffusion 
limited
•Reaction barrier can be 
well approximated by 
difference in formation 
energies plus migration 
energy of mobile species.

*Uberuaga, Windl et al.
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B-I Cluster Structures from Ab Initio Calculations

B3I2
0

B2I0BI+

BI2
0

BI3
+ B4I3

-

B3I-

B4I2
0

B4I2-

B3I3
-

B2I2
0

B2I3
0

BxI

BxI2

BxI3

I>3 B12I7
2-B4I4

-

LDA −0.5

GGA −0.4
−2.0
−1.2

−3.0
−2.2

−5.5
−4.3

−2.5
−2.3

−3.0
−2.4

−4.1
−2.6

−5.5
−4.3

−4.8
−4.5

−6.0
−5.3

−6.6
−5.6

−7.0
−5.9

−9.2
−7.8

−24.4

N/AX.-Y. Liu, W. Windl, and M. P. Masquelier,
APL 77, 2018 (2000).
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Activation and Clusters 

GGA

 30 min anneal, different T (equiv. constant T, varying times)

B3I3
-

B3I-
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• Sum of small errors in ab-initio exponents has big effect on 
continuum model

∀⇒ refining of ab-initio numbers necessary

•  Use Genetic Algorithm for recalibration

Calibration with SIMS Measurements
C

on
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Statistical Effects in Nanoelectronics:
       Why KMC?

SIMS

*A. Asenov

Need to think about exact distribution ⇒ atomic scale!
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Conclusion 1

• Atomistic, especially ab-initio, calculations 
very useful to determine equation set and 
parameters for physical process modeling.

• First applications of this “virtual fab” in 
semiconductor field.

• In future, atomistic modeling needed (example: 
oxidation model later).
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CNTMetal
lead

Eo 

Vo 

Vacuum 
level

Lead CNT

Before contact After contact

ΦL

ΦCNT

VB

VB

CBCB

EF

EF EF

ΦB  = ΦL –  ΦCNT

CNT-FET as Schottky Junction

Desirable: ΦB = 0 to minimize contact resistance.

Metals with “right” ΦB: Pt, Ti, Pd.
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Notice the difference in the y-
axis. The X structure (below) 
carries a current which is about 
one order of magnitude smaller 
than the CNT inline with the 
contacts (left) 

The main peak in the X structure is 
located at ~5 V, which is close to 
the value from the inline structure 
(~5.5 V). This indicates that the 
qualitative features in the 
conductance derive from the CNT 
while the magnitude of the 
conductance is set by the contacts. 
The extra peaks seen on the right 
may be due to incomplete 
relaxation.
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PDOS for the relaxed CNT in line with contacts. The two curves correspond 
to projections on atoms far away from the two interfaces. A (3,3) CNT is 
metallic, still there is a gap of about 4 eV. Does the gap above result from 
interactions with the slabs or from lack of kpts along z? This question is not 
so important since the Fermi level is deep into the CNT valence band.


