Kondo Effect and Phase-Coherent Transport in Quantum Dots

Kicheon Kang

Department of Physics Chonnam National University

Gwangju, Korea

Collaborators

- **Theory :** Quantum Dots, Rings, Wires
 - G. L. Kim (Chonnam National University)
 - S. Y. Cho, R. McKenzie (Univ. of Queensland, Australia)
 - M.-S. Choi (Korea University)
 - L. Craco (Köln, Germany)
- **Experiment :** Semiconductor Quantum Devices, CNT Devices M. Jang, S. Lee *(ETRI)*, K.W. Park *(University of Seoul)*
 - J. Kim, N. Kim *(KRISS)*
 - J.-J. Kim (Chonbuk National University)

• Coherent transport in quantum dots

- Coherent transport in quantum dots
- . Kondo effect in quantum dots

- Coherent transport in quantum dots
- . Kondo effect in quantum dots
- Phase coherence of the Kondo effect

- Coherent transport in quantum dots
- Kondo effect in quantum dots
- Phase coherence of the Kondo effect
- "Mesoscopic" Kondo effect and spin-charge separation

• Coherent transport in quantum dots

- Kondo effect in quantum dots
- Phase coherence of the Kondo effect
- "Mesoscopic" Kondo effect and spin-charge separation

• $\lambda_F \ll L_x, L_y, L_z$: 3-dimension

- $\lambda_F \ll L_x, L_y, L_z$: 3-dimension
- $L_x < \lambda_F \ll L_y, L_z$: 2-dimension (2-D electron gas)

- $\lambda_F \ll L_x, L_y, L_z$: 3-dimension
- $L_x < \lambda_F \ll L_y, L_z$: 2-dimension (2-D electron gas)
- $L_x, L_y < \lambda_F \ll L_z$: 1-dimension (quantum wire)

- $\lambda_F \ll L_x, L_y, L_z$: 3-dimension
- $L_x < \lambda_F \ll L_y, L_z$: 2-dimension (2-D electron gas)
- $L_x, L_y < \lambda_F \ll L_z$: 1-dimension (quantum wire)
- $L_x, L_y, L_z < \lambda_F$: 0-dimension (quantum dot)

2-Dimensional Electron Gas (2DEG)

- High mobility/coherence due to separtion of the conduction channel and the doped region
- Gating/etching required to get lower dimension (wire, dot)

Quantum Dot (Artificial Atom)

Charge and energy quantization

- E_c : single electron charging energy, Δ : energy level discreteness
- $E_c \equiv e^2/2C \gg k_B T$: Coulomb blockade, single electron tunneling (SET)
- $\Delta \gg k_B T$: Quantum confinement, resonant tunneling \rightarrow phase-coherent process

"Cotunneling" in the Coulomb Blockade Region

Averin & Nazarov (1990) - Theory; Eiles et al., PRL (1992) - Experiment

- Cotunneling: 2nd or higher order (virtual) process
 - Macroscopic quantum tunneling of charge

$$\mathsf{G} \propto \mathsf{T}^2, \mathsf{V}^2$$
 for $\Delta \to \mathsf{0}$ (Inelastic)

 For ∆ ≫ k_BT, eV inelastic cotunneling current is strongly suppressed (See e.g., Kang & Min, PRB (1997))

Resonant Tunneling through a Quantum Dot

• "Coherent" resonant tunneling through a single impurity level (ε_0) for $\Gamma \gg k_B T$

$$G = \frac{2e^2}{h} |t_{res}(E_F)|^2 = G_{max} \frac{1}{e_0^2 + 1} \qquad \left(e_0 \equiv \frac{2}{\Gamma}(\varepsilon_0 - E_F)\right)$$

• Phase coherence of the transmission amplitude $|t_{res} = |t_{res}|e^{i\gamma}|$ cannot be directly addressed (Conductance measures $|t_{res}|$ only)

- 2-Terminal Aharonov-Bohm (AB) Interferometer (Yacoby et al., PRL (1995))

- AB oscillation of the conductance \rightarrow Phase coherence of transmission through a QD
- Onsager's relation $G(-B) = G(B) \longrightarrow$ Phase rigidity ($\varphi_{qd} = 0$ or π) Yeyati & Büttiker, PRB (1995)

Phase Measurement of a Quantum Dot

- AB Interferometer with Open Geometry (Schuster et al., Nature (1997))

- Open geometry allows two-path interference and continuous phase evolution of t_{qd}
- Abrupt phase drop (π) accompanied by transmission zero / In-phase resonances
- Generic transmission zero in a single channel transport with a time-reversal symmetry (H. W. Lee (1999))

Detecting the Phase Coherence II

- Fano Resonances (Göres et al., PRB (2000))

• Fano-resonance as a result of the interference between t_{res} and t_0

$${\sf G}\simeq rac{2{\sf e}^2}{{\sf h}}|{\sf t}_0+{\sf t}_{\sf res}|^2={\sf G}_0rac{|{\sf e}_0+{\sf Q}|^2}{{\sf e}_0^2+1}$$

• Asymmetric line shape : Evidence of the phase coherence

Fano Resonance in Carbon Nanotubes

(J. Kim, Kicheon Kang, and coworkers, PRL (2003))

- Resonant "cavity" at the contact between the two CNTs
- "Aharonov-Bohm oscillation" of the Fano resonances
- Agrees well with the simple theory of Fano-resonance with AB phase:

$$\mathsf{G}\simeq\mathsf{G}_0\frac{|\mathsf{e}_0+\mathsf{Q}|^2}{\mathsf{e}_0^2+1},\quad \mathsf{Q}=\mathsf{Q}_\mathsf{R}\cos\varphi+\mathsf{i}\mathsf{Q}_\mathsf{I}\sin\varphi$$

"Anti-Coulomb-Blockade"?

Theory: Kicheon Kang et al., PRB(2001), Experiment: K. Kobayashi et al., cond-mat/0311497

• Theoretical prediction for 1D wire + dot:

$$G = (e^2/h)\cos^2 \pi n_d$$

- Anti-resonances around $n_d = N + 1/2 \leftarrow$ "destructive interference"
- Quasi-periodic "anti-resonance": verified experimentally

- Coherent transport in quantum dots
- Kondo effect in quantum dots
- Phase coherence of the Kondo effect
- "Mesoscopic" Kondo effect and spin-charge separation

Kondo Effect in Dilute Magnetic Alloys

- Antiferromagnetic exchange interactions between the impurity spin and the conduction electron spin
- (Entangled) spin singlet ground state is formed between the impurity and the conduction electrons
- Screening cloud around the impurity (with its size ξ_K and the binding energy T_K) screens the local magnetic moment
- Enhanced resistivity at low temperatures due to the large spin-flip scattering cross section

Origin of the Resistance Anomaly

J. Kondo (1964)

• Spin-exchange Hamiltonian

$$\mathbf{H} = -\mathbf{J}\,\boldsymbol{\sigma}\cdot\mathbf{S} \quad (\mathbf{J}<\mathbf{0})$$

• 2nd-order spin-exchange scattering amplitude:

$$\sim J^2 \sum_{I} \frac{f(E_I)}{E_F - E_I} \sim -J^2 \rho(E_F) \log{(k_B T/D)}$$

• Logarithmic singularity \leftarrow time-reversal asymmetry of the two processes!

Kondo-Resonant Transmission

Langreth (1966), Glazman & Reich (1988), Ng & Lee (1988)

$$|out\rangle = S|in\rangle, \quad S = \left(egin{array}{cc} r & t \\ t' & r' \end{array}
ight)$$

 \bullet Generalized Friedel sum rule: No inelastic scattering takes place at T=0

$$|\mathbf{t}|^2 = \sin^2 \frac{\pi}{2} \mathbf{n}$$

• Conductance formula

$${\sf G}={2{\sf e}^2\over {\sf h}}|{\sf t}|^2\longrightarrow 2{\sf e}^2/{\sf h}$$
 for $n=1$ (Unitary limit)

• Coherent superposition of "spin-flip" cotunneling events

Kondo Effect in Quantum Dots

Goldhaber-Gordon et al. (Nature 1998), Cronenwett et al. (Science 1998), and more...

- Strong even-odd effect
- Conductance enhanced at low temperatures in the "Kondo" valley
- Observed also in carbon nanotubes, single molecules

Kondo Effect in the Unitary limit

W. van der Wiel *et al.* (Science 2000)

• Unitarity / universal scaling

- Coherent transport in quantum dots
- Kondo effect in quantum dots
- Phase coherence of the Kondo effect
- "Mesoscopic" Kondo effect and spin-charge separation

Kondo Resonance as a Scattering Problem

Langreth (1966), Glazman & Reich (1988), Ng & Lee (1988)

$$|out\rangle = S|in\rangle, \quad S = \begin{pmatrix} r & t \\ t' & r' \end{pmatrix}$$

• Generalized Friedel sum rule: No inelastic scattering takes place at T = 0

$$t = -i\sin\gamma e^{i\gamma}, \ \gamma = \frac{\pi}{2}n$$

• $|G = (2e^2/h) \sin^2 \gamma|$: Conductance enhanced in the Kondo limit (n = 1)

 \bullet Phase shift of $\Delta\gamma\equiv\gamma(n=1)-\gamma(n=0)=\pi/2$

Y. Ji et al., Science (2000); PRL (2002)

- Phase-coherent transmission: From the Coulomb blockade to the Kondo limit
- Anomalous phase shift at the Kondo plateaus with $\Delta \gamma \sim \pi$ instead of $\pi/2$
- Charge fluctuation is important in the unitary limit

K. Kang et al., cond-mat/0401169

$$H = H_L + H_R + H_D + H_T$$

$$H_D = \sum_{\sigma} \varepsilon_0 d_{\sigma}^{\dagger} d_{\sigma} + U \hat{n}_{\uparrow} \hat{n}_{\downarrow} ,$$

$$H_T = \sum_{\sigma} \left(w c_{L\sigma}^{\dagger} c_{R\sigma} + h.c. \right) + \sum_{\alpha \in L, R; \sigma} V_{\alpha} \left(d_{\sigma}^{\dagger} c_{\alpha\sigma} + c_{\alpha\sigma}^{\dagger} d_{\sigma} \right)$$

• Transmission amplitude at zero temperature (obtained from the generalized Friedel sum rule)

$$t_{LR} = t_{LR}(0) = \frac{ie^{i\varphi}|t_b|}{e_0 - i} (e_0 + Q)$$
$$e_0 = \cot(\pi n_d/2), \quad Q = -\frac{|r_b|}{|t_b|}\cos\varphi + \frac{i}{|t_b|}\sin\varphi$$

- Phase difference between w and $V_L V_R$ (φ) = 0 or π in the presence of time-reversal symmetry
- For $t_b = 0$ (no background), $\Delta \gamma = \pi/2$ (Ordinary Kondo problem)
- At finite temperatures:

$$t_{LR} = \int \left(-\frac{\partial f}{\partial \omega}\right) t_{LR}(\omega) \, d\omega$$

Toward an Explanation of the Phase Evolution: Result

- Slave boson mean-field approach with $U = \infty$
- For finite small t_b with $T \neq 0$, $\Delta \gamma \rightarrow \pi$ instead of $\pi/2$

- Finite background t_b & time-reversal symmetry \rightarrow Anomalous phase evolution
- Universal feature independent of the approximation

NRG Result for finite U

 $|t_b| = 0.2, \ \varphi = 0, \ T/\Gamma_{\text{eff}} = 0, 10^{-4}, 10^{-3.5} \cdots 10^{-0.5}$

• Evolution from $\pi/2$ -plateau to π -plateau as increasing temperatures

Crossover from $\Delta \gamma \sim \pi/2$ **to** $\Delta \gamma \sim \pi$ **at the Kondo valley**

- $T < T_1$: Unitary Kondo limit with $\Delta \gamma \sim \pi/2$
- $T > T_1$: High temperature Kondo region with $\Delta \gamma \sim \pi$
- From the Fermi-liquid expression of the Green's function we obtain

$$t_{LR} \simeq i|t_b| \frac{\pi T}{T_K + \pi T} + |r_b| \frac{T_K}{T_K + \pi T}$$

• Crossover takes place when the real and the imaginary part are comparable:

$$T_1 = \frac{|r_b|}{\pi |t_b|} \cdot T_K$$

- T_1 decreases as $|t_b|$ increases
- For $t_b = 0$ only $\pi/2$ -plateau exists
- $|t_b|$ and T_K might be extracted from the experimental data
 - \rightarrow Our prediction is experimentally testable

Anti-Kondo Resonance

K. Kang et al., PRB(2001)

- Theoretical prediction : $G = (2e^2/h) \cos^2(\pi n_d/2)$ (for T = 0)
- For an isolated one-dimensional ballistic wire: $G = G_0 \equiv 2e^2/h$
- For S = 0, $G \rightarrow G_0$: The wire and the dot is effectively decoupled
- For S = 1/2, $G \rightarrow 0$: Destructive interference between the ballistic channel and the spin (Kondo) channel
- Anti-resonance behavior at finite temperatures

Anti-Kondo Resonance : Experimental Challenges

ETRI

- Delft University (Leo Kouwenhoven, PRL (2002))
- ETRI
- ISSP, U. of Tokyo with AB-type geometry

- Coherent transport in quantum dots
- Kondo effect in quantum dots
- Phase coherence of the Kondo effect
- "Mesoscopic" Kondo effect and spin-charge separation

Mesoscopic Kondo Effect

 $(\delta = hv_F/L, T_K = hv_F/\xi_K)$

— Mesoscopic Kondo Effect, Detection of the Kondo cloud

- Kondo Box: A single Kondo impurity embedded in a mesoscopic box (Thimm et al., PRL (1999))
- Composite QD AB ring: More systematic study via the gates, AB phase.

Persistent Current in a Perfect 1D Ring

- Persistent current (PC): Indicator of quantum coherence in mesoscopic scale
- Elastic scattering (e.g. due to geometric imperfection) reduces the current, but does not destroy the phase-coherence $(L_{\phi} \neq l)$

- Leading order $1/N_s$ expansion (N_s : Spin degeneracy)
- I_0 : current amplitude for an ideal ring
- Kondo assisted tunneling through the QD provides persistent current (I)
- Current suppressed for $\delta/T_K \gg 1$: Destruction of the screening cloud \longrightarrow *Mesoscopic Kondo effect*
- Universal scaling with strong even-odd effect for the total number of electrons
- Suppression of the current for odd parity : because $I_{\downarrow} \sim -I_{\uparrow}$

Leggett's Theorem

- For any 1D mesoscopic ring with N spinless electrons, the persistent current is
- Diamagnetic (Ground state at $\Phi = n\Phi_0$) for odd N, and
- Paramagnetic (Ground state at $\Phi = (n + 1/2)\Phi_0$) for even N,

regardless of interactions, disorder, etc.

- $I(\phi) = I_{ring}(\phi) + I_{int}(\phi)$ (I_{ring} : from the ideal ring, I_{int} : from the interaction)
- $I \rightarrow I_{ring}$ in the continuum limit $(\delta/T_K \rightarrow 0)$: Agrees with the exact Bethe ansatz result (H.P. Eckle *et al.*, PRL (2001))
- Linear reduction of the normalized current for small δ/T_K : $I/I_{ring} = I_{ring} c \cdot \delta/T_K$
- For $\delta \gg T_K$, $I \to I_{ring}^{N-1}$ (PC of an ideal ring with an electron missing): Effective decoupling of the ring and the dot

Remarks on Some Theoretical Debates

Behavior of the Persistent Current (PC) in the Limit of $L \to \infty$

- For any 1D noninteracting system, a correspondence exists between the PC and transport in an open system (Gogolin (1994)): If $T(E_F) = 1$, then $I/I_{ring} = 1$
- A Kondo-correlated QD does not seem to meet this condition

 $T(E_F)=0, \ \ \text{but} \ \ I/I_{ring}=1$

- Transport counts "electrons", but PC does not! (Cho et al., PRB (2001), Eckle et al., PRL (2001), etc.)
- Opposite result by Affleck et al., PRL (2001) based on RG

 $T(E_F)=0, \quad I/I_{ring}=0$

Dephasing Induced by a Reservoir

M. Büttikker, PRB (1985)

• Dissipative reservoir as an artificial dephasor: No phase coherence between the electrons absorbed by and those emitted by the reservoir \rightarrow Reduces the AB oscillation

$\gamma :$ relative coupling strength of dot-reservoir to dot-ring

•
$$I(\phi) = I_{ring}(\phi) + I_{int}(\phi)$$
: Universal function of δ/T_K^0 , γ

• The PC increases as γ increases: Counterintuitive!

Effects of the Dot-Reservoir Coupling

- To enhance the Kondo energy scale T_K (and thus reduces δ/T_K) \rightarrow Enhances the PC
- To induce dephasing ?

Spin Fluctuation Induced Dephasing

- Current as a function of δ/T_K : The effect of the rescaled Kondo energy extracted
- Even after subtracting the effect of renormalized T_K , the PC increases due to the dot-reservoir coupling \longrightarrow Dephasing tends to enhance the AB oscillation !!
- Dot-reservoir coupling reduces I_{int} only: $I \rightarrow I_{ring}$ for $\gamma \gg 1$
- Can be interpreted as spin-charge separation: The reservoir degrades the coherence of spin degree of freedom (I_{int}) only, not affecting the charge one (I_{ring})
- Coherence factor defined by the relative strength of the slope in I_{int} vs. δ/T_K : $\eta \equiv c(\gamma)/c(0)$

- Mesoscopic Kondo effect can be detected by transport experiment for weak lead-dot coupling
- Phase-dependent Kondo resonance for small ring $(L < \xi_K)$ with modulo 4
- For larger rings the Kondo resonance is not phase-sensitive

Summary

- Coherent transport in quantum dots
- Kondo effect in quantum dots
- Phase coherence of the Kondo effect
- "Mesoscopic" Kondo effect and spin-charge separation

Vielen Dank!