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Outline of the talk

e Motivation and Definitions

e Overview of theoretical models
— Juilliere’s model
— ab initio calculations
— Bratkovsky’s model

— Extension of Bratkovsky’s model

e Results
— Magnetic field dependence
— Effect of disorder on the TMR

— Connection to Juilliere’s model

e Conclusion
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Tunneling magnetoresistance

The resistance of an insulating layer sandwiched between two
ferromagnetic contacts depends on the alignment of the

magnetization in the ferromagnets:

insulating layer

parallel
configuration

antiparallel
configuration

The resistance is higher in the antiparallel configuration.

The TMR ratio is defined as

Rap— R
TMR= -2 —F
Rp
e Juillere 1975: TMR 14% at 4.2 K and small bias voltages

(Ge)

e today: TMR > 10% at room temperature and higher
voltages (AloO3)

The TMR effect has promising applications in spin-electronics:

magnetic sensors, hard disks, MRAMs
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Experiments

Experiments in the group of Prof. Weiss in Regensburg on

Fe/GaAs/Fe tunnel junctions

[1 small TMR effect: 0.2—1.7% (band structure considerations
predicted ~ 100%!)
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S. Kreuzer et. al., Appl. Phys. Lett., 80, 4582 (2002)

[1 anomalous magnetoresistance in high magnetic fields
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M. Zenger et. al., to be published in Appl. Phys. Lett.

[] Interdiffusion of iron atoms in GaAs barrier?

[1 Importance of spin flip scattering?
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Physics behind TMR

The density of states of a magnet is different for spin up and

spin down. Tunneling depends on the density of states:

E
antiparallel
configuration

F % ﬁ
Er
parallel
configuration
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Juilliere’s model

Physics Letters 54A, 225(1975)

Assuming that the conductance is proportional to the DOS, the
TMR ratio reads:

2 P2

IT'MR=——
1 — P>

where P is the (spin) polarization of the ferromagnets:

_ D1(Er) — D (EF)

e widely used to interpret experiment

P

e TMR ratio intrinsic property to the ferromagnetic leads
e rather useful for e.g. Alo O3 barriers
e however: overestimates TMR value for GaAs barrier

From a theoretical point of view:

Model is valid for the case of a very high and disordered

barrier!

D. Ryndyk, unpublished
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ab inito calculations
Try to model the system as detailled as possible:
e structure
® electronic properties

e relativistic effects (spin-orbit, ...)

e usually limited to epitaxial systems

® numerics can be difficult — various problems

® in my opinion: results can be difficult to interpret
e Prediction for GaAs barrier: T'M R ~ 100%

e large TMR values arise because of symmetries
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Bratkovsky’s model

PRB 39, 6995 (1989), PRB 56, 2344 (1997)

Model the system using a free electron gas description:

Ferromagnet | Ferromagnet

| solator

e ferromagnet: exchange splitting.
e different materials: different effective mass m ™.

— “Tunneling through a step barrier”

Parallel confi guration Antiparallel confi guration
| (Vo — Er) | jo
e AR CEEEEEEEEE fmmmmme- ——
¢ m my m

Symmetry in the system
We consider a clean system
— translational symmetry parallel to the barrier
—> conservation of parallel momentum k||.

— independent transport channels
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Bratkovsky’s model - part 2

Bratkovsky’s approximations

This model can be solved exactly (numerically). But there is

some useful approximation:

In the case of a low batrrier,
e transport is essentially one-dimensional,
e only perpendicular incidence is transmitted.

In this limit the Juilliere model holds with a modified Polarization
P.g:

ko — (mp/m)*kp 1kr |

ko + (my/m)? ke 1kp,

e |F the effective mass in the barrier is small compared to the

Peg = P

electron mass mp < me
—> The same result as Juilliere’s model

BUT: this is just a coincidence, the physics is totally different!

e Again: no quantitative agreement with experiment.
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Comparison of models

Juilliere’s model

Bratkovsky’s model

ab inito calculations

high barrier

disordered system

low barrier

clean system

any system

epitaxial systems

e Juilliere’s and Bratkovsky’s model describe contrary

situations

e Juilliere’s model more appropriate for oxide barriers

e Bratkovsky's model maybe appropriate for semiconductor

barriers?
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Model and technique
Extend Bratkovsky’s model to include disorder:

e elastic disorder: d-peaked impurities with random position

and strength

—> isotropic momentum scattering

e spin-flip disorder: d-peaked impurities with random position

and a small random magnetization

— spin-flip and momentum scattering

[1 model is useful to describe scattering on magnetic

impurities (e.g. iron atoms in GaAs)
[1 not suited for magnon scattering
[1 low-bias and T" = 0 limit

[1 conductance is now calculated numerically
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Magnetic field dependence of tunnel

resistance
We consider a magnetic field parallel to the tunnel barrier

e \WKB approximation: quadratic increase of resistance

(L. Eaves, in The physics and fabrication of microstructures and microdevices)

e our numerical studies show qualitative agreement with

WKB approximation, but better quantitative agreement with

experiment
T ' T
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[1 simple model can capture a lot of the relevant physics.
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Disorder at interface — transmission

Consider disorder only close to interface

Transmission with spin-flips:

parallel alignment antiparallel alignment

T
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[1 overall transmission is increased

L] disorder lifts kj|-conservation
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[1 increase in antiparallel case is stronger than in parallel case

= decrease in TMR ratio
M.Wimmer and K.Richter 13



Disorder effects on SDT 17.6.2004

Disorder at interface — TMR ratio

Definition: TMR = RAP;_{—;RP. (“optimistic” TMR ratio)

Effect of disorder on the TMR ratio:
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[1 disorder can decrease the TMR effect significantly

[1 almost identical decrease of TMR ratio for spin conserving

and spin-flip scattering!
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Disorder at interface — polarization

dependence

Transmission in the presence of disorder depending on the
spin-polarization P of the ferromagnets:

Tunneling through barrier

Disorder but no barrier
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[1 similar behaviour of tunneling probability for spin-conserving

and spin-flip scattering except for P ~ 1
[1 but: significant effect of spin-flips without barrier!

— spin-flips less important because barrier acts as a quasi

one-dimensional channel?
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Disorder at interface — angular dependence

Dependence of transmission probability on the angle between

the magnetizations in the ferromagnet with disorder:

Transmission probabilities:
no spin-flips with spin-flips
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[1 angular dependence shows cos-behaviour just as in clean

case, regardless of scattering

[1 “effective” (spin) polarization is decreased
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What about Juilliere’s model?
e Juilliere’s model rather successful for AloO3 barriers
e oxide barriers are usually amorphous — a lot of disorder
e we just showed that disorder decreases the TMR ratio ...

Consider the case of a very high barrier (15 eV) and disorder at

the barrier interface
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[1 disorder again reduces TMR value drastically
[1 BUT: TMR ratio saturates at a value above 0

[1 this is consistent with Juilliére’s model: a finite TMR ratio for

a high, disordered barrier.
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Conclusions
We have shown that:
e Disorder can decrease the TMR effect significantly.

e Spin-flips have little influence on the TMR ratio if there is

also momentum scattering.

e The TMR of high tunnel barriers (e.g. oxide barriers) is more
robust against disorder than low barriers (e.g.

semiconducting barriers)
Have we explained the experimental findings?
Maybe. Maybe not.
e The model of the system may be to simple.

e The strength of the impurities is a parameter in our

simulations, it should be calculated from first principles.

® However: the simulations can show us trends:

[1 Although the semiconducting barrier itself is
one-crystalline, having a clean interface might be crucial
for such a low barrier, in contrast to the rather high oxide

barriers = contradicts our intuition!
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Suggestions to the experimentalists

Unfortunately | don’t have any. But open for discussion ...
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