

Numerical studies of quantum transport in carbon nanotubes

François Triozon and Stephan Roche

Commissariat à l'Energie Atomique, Grenoble, France

1

Outline

- Research environment : « RTB » projects
 - Intrinsic transport in CNTs : role of disorder
 - Magnetotransport : generalities and experiments
 - Magnetotransport simulation: combined role of disorder + parallel magnetic field
 - Perspectives

Recherche **T**echnologique de **B**ase

Our scientific interests

• Quantum simulation of CNT field effect transistors : transmission through metal-nanotube interfaces, gate electrostatics

- Intrinsic transport properties of CNTs : role of disorder and magnetic field
- Generalization to other nano-systems : nanowires, molecules...

Methods :

• tight-binding hamiltonians \rightarrow large systems

• coupling with ab-initio calculations (DFT) to improve tight-binding parameters

Carbon nanotubes

Helicity

$$\vec{C}_{(l,m)} = 1\vec{a}_1 + m\vec{a}_2$$

Diameter $d_{(l,m)} = \frac{\left|\vec{C}_{(l,m)}\right|}{\pi}$
Unit-cell length $\left|\vec{T}_{(l,m)}\right|$

Electronic properties

Band structure and density of states

$$E_{+}(k=0) - E_{-}(k=0) \equiv \frac{2\pi \, a \, \gamma_{0}}{\sqrt{3} \|\vec{C}_{h}\|}$$

$$d_{t=}1.4$$
 nm $\rightarrow \Delta_g$ =0.6 eV

$$E_{\pm}(\delta k) \equiv \pm \frac{\sqrt{3a}}{2} \gamma_0 \left\| \delta \vec{k} \right\|$$

Scattering and non-ballistic transport

disordered CNTs : mean free path

Energy dependence

F.T., S. Roche, A. Rubio, D. Mayou, Phys. Rev. B (2004)

Nanotube + metallic contatcs

Conductance through a disordered section

Magnetotransport : Aharonov-Bohm phenomena

Doubly connected systems (rings), cylinders

I- Electronic structure : periodic oscillations of period Φ_0 (=h/e)

II- Weak localization : $\Phi_0/2$ -periodic oscillations

III- Persistent currents : Φ_0 -periodic oscillations

Nanotube in parallel field

Nanotube in perpendicular field

S. R., G. Dresselhaus, M. Dresselhaus & R. Saito, Phys. Rev. B 62, 16092 (2000)

Period of AB oscillation in parallel field ?

A. Bachtold et al, Nature 397, 673 (1999)

J. Lee et al, Sol. St Com 115, 467 (2000)

Numerical study of weak localization

Approximation : no DOS effects !

œ

 l_e < tube circumference Negative MR Oscillations in $\Phi_0/2$

Ltube > ${\rm I_e}$ > tube circumference Negative MR Oscillations in Φ_0

I_e > L_{tube} Positive MR Oscillations in Φ_0

S. R, F. Triozon, A. Rubio, D. Mayou, Phys. Rev. B 64, 121401 (2001)

Simulation in parallel field

h/e oscillation of the gap in parallel field ? U.C. Coskun et al., Science 304, 1132 (2004)

Regensburg group

Experiments in parallel and perpendicular field, T=20 mK, tube diameter=20 nm, strong gate coupling **Conclusion and perspectives**

- Magnetotransport : DOS effects and localization effects \rightarrow difficult interpretation
- Large diameter nanotubes give more information (several flux quanta) → future simulations for d = 10 nm or more
- The nature of disorder (structural or chemical) strongly influences the energy dependence of the mean-free-path \rightarrow go beyond the Anderson model