Contacting a single molecular wire by STM manipulation

Francesca Moresco

Institut für Experimentalphysik Freie Universität Berlin

Thanks

Leo Gross Leonhard Grill Micol Alemani Letizia Savio Gerhard Meyer (IBM Zürich) Karl Heinz Rieder

Institut für Experimentalphysik Freie Universität Berlin

André Gourdon Hao Tang Ping Jiang Christian Joachim

Nanoscience Group CEMES-CNRS Toulouse

Scanning Tunneling Microscope

1982 Gerd Binnig and Heinrich Rohrer

Very small changes in the tip-sample separation induce large changes in the tunneling current

local density of states (LDOS)

Low temperature STM

Manipulation with the STM tip

Lateral Manipulation:

The adsorbate moves without loosing the contact to the surface

Vertical Manipulation:

The adsorbate is picked up and deposited elsewhere

Lateral Manipulation

Nanostructures

"Quantum Corral" of Ag Atoms

Standing waves of the electrons in the surface state

Kai-Felix Braun, FU Berlin

Manipulation of complex molecules

Application of the single atom manipulation techniques to large specially designed molecules

LT-STM: from imaging to manipulation

Imaging

- Atomic resolution
- Control of the geometry of the system

Current measurements

 Controlled 2-Terminal electron transport through a molecule

Manipulation

- Mechanics of a molecule on a surface
- Induce conformational changes

Interpretation of STM images

Which information can be extracted from the STM image of a molecule on a surface?

 \checkmark The molecule perturbs the LDOS on the surface

✓ Characteristic local tunneling footprint of the molecule

Adsorption geometry?

Conformation?

MM-ESQC

Elastic Scattering Quantum Chemistry (C. Joachim, Toulouse)

Molecular Mechanics:

Optimization of the molecular deformation on the surface

ESQC:

Calculation of the full scattering matrix of the STM tunnel junction over the entire molecule

Images

- Electronic properties
- Conformational changes

Calculation of the STM image

Comparison with the experimental image

Molecular switch

TBPP

- In the gas phase the TBP-groups are perpendicular to the porphyrin ring
- The lateral groups can rotate

••• by the rotation of a leg

••• under the tip of an STM

TBPP on Cu(211)

Manipulation of a leg

Lateral Manipulation

Image: $R = 7.5 \times 10^8 \Omega$

Manipulation: $R = 6 \times 10^4 \Omega$

Vertical Manipulation

Image: z_o = 0.75 nm

Manipulation: $\Delta z = 0.45 \text{ nm}$

Molecular switch: Theory

F. Moresco, G. Meyer, K.H. Rieder, H. Tang, A. Gourdon, C. Joachim, Phys. Rev. Lett. 86, 672 (2001)

Contacting a single molecule

Problem:

Electronic properties of the contact between an isolated molecule and metallic electrodes

Previous results:

- Ensemble of molecules
- Break junction measurements
- ✓ Calculations: electron transport in junctions

LT-STM:

- ✓ Individual molecules
- \checkmark Atomic control of the geometry of the system
- ✓ Manipulation

Special molecules, which can be connected with a metallic electrode in a planar way. Suitable metallic electrodes: step edges or nanostructures.

Lander ($C_{90}H_{98}$)

model system for a molecular wire on a metallic surface

A. Gourdon Eur. J. org. Chem. 1998, 391 (1999)

Lander/Cu(111) step edges

Same configuration as observed on Cu(100) [Kuntze et al Phys. Rev. B 65, 233405 (2002)]

Sample at room temperature during the deposition: the molecules are found aligned along the steps

Board parallel to the step and located on the upper terrace

Two legs are on the upper and two on the lower terrace

____ 0 Å

7 Å

 $V = 0.9 V, I = 2 \times 10^{-10} A$

Cu(110): Formation of Nanostructures

Lander/Cu(110)

F. Rosei et al. Science 296, 328 (2002)

Adsorption of Lander molecules at Cu(110) step edges

Selective Adsorption Surface Restructuring

2-atoms wide rows

Idea: Manipulation to contact

Motion along the Cu-Wire

Contact position: theory

The contact is visible only in this final position.

L. Grill, F. Moresco, P. Jiang, C. Joachim, A. Gourdon, K.-H. Rieder , Phys. Rev. B 69, 035416 (2004)

Contacting a Lander to a step edge: Cu(111)

Manipulation in constant height mode, z = 0.25 nm, image V = 0.8 V, I = 0.2 nA, T = 8 K

Connecting the legs to a step

The molecule can be manipulated to connect the legs to the step The board is parallel to the step edge

Two legs are in contact with the step

ESQC calculations

Model

Contacting the board to the step

Contact position

position

ESQC calculation

Model

The terminal — naphthalene group of the wire is in contact with the step edge

Effect on the standing wave patterns

The different stages of the contact

Apparent height at the contact: about 15 pm

Cu(111): standing wave patterns

When such electron gas is scattered by **adsorbates** or **step edges**, it creates **standing wave patterns**

Board parallel to the step

2.1 Å

The parallel patterns on the upper terrace are not influenced by the molecule

The molecule scatters surface state electrons of the lower terrace

Board perpendicular to the step

The wave amplitude is reduced at the contact location

The molecule scatters surface state electrons of the lower terrace

Influence of the contacted board

Single scattering calculations

Single scattering calculations

Very good agreement between experiment and model

Standing waves: comparison

The model exactly reproduces the position of the end naphthalene group

The standing wave patterns are modified by the end naphthalene group building the contact

F. Moresco, L. Gross, M. Alemani, K.H. Rieder, H. Tang, A. Gourdon, C. Joachim, Phys. Rev. Lett. 91, 36601 (2003)

Summary

TBPP on Cu(211): molecular switch

- A single leg can be reversibly rotated
- The tunneling current depends on the orientation of the legs

-	
0	

Cu(110) nanostructure

- Manipulation step by step
- Characterization of the contact

Cu(111) step edge

- Manipulation to contact
- Standing wave patterns modified by the contacted board

Founded by the EU program RTN "AMMIST" and Volkswagen Foundation project "Single Molecule Synthesis"