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Introduction

Idea behind pumping : to generate motion of particles by slow periodic modulations

of their environment, e.g. their confining potential or a
magnetic field.

U U(x) = U, sin(2nx/a)
Thouless pump, 1983 : adiabatic transport
of electrons in 1D periodic potential Uy i
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a phase difference can produce pumping & ==

Archimedean screw

* over 2000 years old ‘s Hertogenbosch, NL

* used for irrigation




Charge pumping in condensed matter systems

Quantum dot = small island in a metal or semiconductor material
(two-dimensional electron gas, 2DEG), confined by gates and
connected to leads via quantum point contacts (QPCs).

2DEG

Elastic scattering length
le ~ 100 um, ballistic
transport

GaAs Al Ga; As ———1um

Quantum dots can be open (wide QPCs) or closed (QPCs pinched off).

First electron pump : turnstile

* Oscillating tunnel barriers
by rf modulation

* Electrons transported one by
one, pumped charge is quantized

% N+1 * “classical” pumping

Kouwenhoven et al., PRL 67, 1626 (1992)
Pothier et al., Europhys. Lett. 17, 249 (1992)




Quantum pumping in quantum dots : idea

Spivak et al, PRL 51, 13226 (1995)

Open quantum dot

Current generated by adiabatic periodic variation
of parameters X and X, (gate voltage, magnetic field)

e
v with a phase difference

lH

Physical picture : infinitesimal change of system parameters
1 8X; during a time &t leads to a redistribution of charge 6Qj;
within the system (due to changing electrostatic landscape).
This redistribution produces electron flows i = 8Qj /6t

« pumped charge depends on the interference of electron wavefunctions
in the system.

e current in general not quantized and its direction depends on
microscopic properties of the (chaotic) system

« reversing phase difference reverses the direction of the current

Quantum pumping experiment

Switkes et al., Science 283, 1905 (1999)
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Experimental set-up, open quantum dot

Red gates control the conductance
of the point contacts

Black gates are used for pumping
Pumped current vs. phase difference ¢




Spin pumping in quantum dots

Quantum dot in parallel magnetic field

Current

Bi=0 i) ) B,#0
Shape or B, Shape or B,

Watson et al., PRL 91, 258301 (2003)
Mucciolo et al., PRL 89, 146802 (2002)

Spin pumping in the quantum Hall regime
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Characteristics :

« electrons travel along the edges of the sample (edge channels)

* quantized energy levels (Landau levels)

« # of edge channels corresponds to the # of (partially) filled
Landau levels v

* separation of “left-movers” and “right-movers”

* electrons can be scattered from one side to another




Idea : investigate pumping of electrons across a Hall bar
and the effect on the nuclei via hyperfine interaction

Motivation : era of quantum computing and quantum information
processing. Spins, electronic but also nuclear,
are promising candidates for qubits because of their
long coherence times.

Drawback : difficult to measure spin effects directly,
easier to measure charge

Ideally : manipulate and read-out spin processes
via charge

Here : contribution towards manipulation and read-out
of nuclear spins via pumped current

Charge pumping in a Hall bar

A e AB and AC form 2 quantum point contacts (QPC’s)
e v =2 :spin-split Landau levels, one for spin-up
o o H and one for spin-down
= = M2
A » the QPC’s transmit at most one edge channel
/B o C * time-varying voltages applied to B and C form
3 pumping parameters
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The pumped current

Dynamics of electrons in absence of gates is described by Hamiltonian :
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For harmonic potential V(y) = % ni 03(2) y2the Schrédinger equation
is exactly solvable — Landau levels
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Model QPC’s as &-function barriers and use Floquet theory to find pumped

current into contact 1, 2 and 3:

def ) 3 {tap (B, BY — |tan( B, B)*)

En 0
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Floquet theory describes pumping in terms of gain or loss of
energy quanta ho at the two oscillating barriers

Incoming particle with energy E leaves with energy &. =

= E + nhw

The Floquet scattering matrix is obtained by matching wave functions
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Energy level diagrams

" | ! ﬁ A
Ep, 1 )l, 7 L v ;
2" B+A<> fie
Eoa ’i i ‘ ot Eo1 A
(a) (b) ;
hw € g*ppB + A{I) hw ~ g*pupB + A{L,}
effective Zeeman gap
A
ri —
For fiw ~ g*upB + A{,) : - Lo H
. between the two Landau levels may occur 1 W — 'tl‘ \i; — W2
« Simultaneously, nuclear spins are flipped B L C
3

Control of nuclear polarization via quantum pumping
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* I3~ 1-10 nA, and 20 % shift of Zeeman gap for typical parameters

» Difference Ao = oyp - ®gown direct measure of local nuclear polarization

M "
R — T [2|9*| 125 B — 2hw(D) — hov(2hweep + Fawen)]

* Nuclear polarization set by the sweep time and sweep rate

Perspectives

« Quantum pumping useful “tool” to study electron transport at the edge
of a 2DEG in the quantum Hall regime

« Provides new technique to accurately manipulate and monitor local
dynamic nuclear polarization

« Interesting as possibility for e.g. memory storage in solid-state systems

Reference: condmat/0307166




Transport through tunnel-coupled quantum dots: Coulomb blockade

Potential landscape of a dot
() Coulomb blockade

3?% ¢ = electrostatic potential of dot

occupied by N electrons

e ‘ g

Ved= (M1t~ M right)/e

Energy required to add an electron:
Mgor(NFD) = 1 goiN) = AE +€%/C
N—N+1=N=N+1=--=-=  No Coulomb blockade

AE = energy level spacing,
typically 10 peV.

In order to resolve the energy levels
AE must be larger than the thermal
energy, AE » KgT.

So temperature must be less

than ~ 10 mK

10



