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1) Max Planck Institute for Physics of Complex Systems, Nöthnitzer Straße 38, D-01187 Dresden, Germany
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Introduction

We use a one-dimensional describtion to characterise the dynamics
of MCAK on microtubules. Because of the depolymerisation
activity of the motor the system comprises moving boundaries.
We use Monte Carlo simulations to get numerical results in the
microscopic description and a continuum mean-field approach to
deal with the problem analytically.

Biological motivation
During cell division Mcak is mainly localised at the kinetochores,
which connect the chromosomes to the MT-spindle, and is associ-
ated with the shortening of the spindle MTs during mitosis.
MCAK belongs to the unusual Kin I subfamily of kinesin-related
proteins [1]. Unlike other motor proteins that move along the
surface of microtubules using ATP, these proteins have a high
binding affinity to microtubule ends and depolymerise them in the
presence of ATP [2].
The rate of tubulin dissociation from microtubule ends, is accel-
erated approximatly a 100-times through Mcak activity and there
is strong evidence that Mcak is working processivly, removing
approximatly 20 tubulin dimers before detaching. [3]

Microtubules (red) and accumulation of Mcak molecules (green) at both ends.
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Flourescent microtubules are depolimerased by Mcak molecules.
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Macroscopic model

We describe the dynamics of the Mcak molecules by a one-
dimensional continuum mean-field theory on a semi-infinite domain.
Because of the depolimerisation we have a moving boundary. By
transforming into a moving frame, we get fixed boundary condi-
tions, but additional terms in the current of Mcak molecules in the
bulk.

Bulk:

∂t%(x, t) + ∂xj(x, t) = ωa − ω′
a%(x, t) − ωd%(x, t)

j(x, t) = −D∂x%(x, t) − v0%(x, t) + v′0%(x, t)2 − vB%(x, t)

Edge:

vB(t) = α%(0, t) − β%(0, t)2

j(0, t) = −Ωtot
d %(0, t) + Ωa − Ω′

a%(0, t)

∂x%(x, t)|x→∞ = 0

Density of Mcak on protofilament for different values of α. α is given in nm−1s−1

The steady-state of this system can be solved analytically for
v0, v

′
0 = 0. The solutions are of the form:

%(x) = %∞ + (%(0) − %∞) e−λ+x ,
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Determining %(0) self consistently leads to a polynomial of 3rd order
in %(x).

Phase diagram for accumulation and depletion as a function of the attachment rate.

The influence of the parameter β on the phase diagram. β is given in nm3/s

Microscopic model
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Sketch of the used model

In order to describe the time evolution of the particle densities 〈ni〉
we look at the currents between one binding site and its neighbour-
ing sites.

Lattice:

ji = ω̄h(〈ni(1 − ni+1)〉 − 〈ni+1(1 − ni)〉

−ω̄v〈ni+1(1 − ni)〉

−p Ω̄c〈n1ni+1〉 − (1 − p) Ω̄c〈n1(1 − n2)ni+1〉

ji−1 = ω̄h(〈ni−1(1 − ni)〉 − 〈ni(1 − ni−1)〉

−ω̄v〈ni(1 − ni−1)〉

−p Ω̄c〈n1ni〉 − (1 − p) Ω̄c〈n1(1 − n2)ni〉

li = ω̄a〈1 − ni〉 − ω̄d〈ni〉

Edge:

j1 = ω̄h〈n1 − n2〉 − ω̄v〈n2(1 − n1)〉 − p Ω̄c〈n1n2〉

li = Ω̄a〈1 − n1〉 − Ω̄d〈ni〉 − pΩ̄c〈n1〉

The time evolution is then given by:

∂t〈ni〉 = ji−1 − ji + li

By making a continuum mean-field approximation of the above
equations, we recover the equations from the macroscopic descrip-
tion.
For this we let N → ∞, where N is the number of binding sites on
the lattice and factorise the two-site correlations,

〈nini+1〉 = 〈ni〉〈ni+1〉

and set

〈ni〉 ≈ ε%

Doing so we get for our parameters α, β, Ωtot
d :

α = ε2Ω̄c

β = ε3(1 − p)Ω̄c

Ωtot
d = εpΩ̄c − εΩ̄d

Speed of depolymerisation over concentration.

Outlook

One of the main goals is to make a conction to experiments. Know-
ing all the reaction rates of MCAK one could use the vB−ωa-curve
to make predictions about the underlying microscopic processes.
Another interesting point would be the examination of the system
regarding density phase transitions as reported in [4].
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