

Freedom of design: towards in silico design of molecules with desired quantum-mechanical properties

<u>Leonardo Medrano Sandonas¹, A. Tkatchenko², G. Cuniberti¹</u>

¹ Institute of Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, Germany.

² Department of Physics and Materials Science, University of Luxembourg, Luxembourg.

properties

"Freedom of design" concept^[1,2]

Flexibility when searching for a single molecule with a desired pair of quantummechanical (QM) properties or distinct molecules with a targeted set of QM properties.

Inverse mapping

autoencoder

Conditional variational

The challenge

ML-augmented semi-empirical method

Molecular

structure

Conditional variational autoenconder^[3]

Training the quantum inverse mapping (QIM) model

The QIM model was developed using a VAE architecture that employs Coulomb matrices as molecular representations along with the corresponding quantummechanical properties.

ML-augmented semi-empirical method^[4,5]

Enhanced density functional tight-binding method

Equivariant Δ_3 many-body potentials have been trained to improve the performance of DFTB3 method, targeting PBE0 level of theory. We have considered state-of-the-art equivariant neural networks such as SpookyNet (SP), MACE (MC), and Allegro (AG).

Predicting properties of non-covalent systems

Multi-property design tasks

Interpretability of the QIM model

Performance of Δ_3 potentials in predicting the interaction energy E_{int} and atomic forces of molecular dimers in the S66x8 dataset.

Non-equilibrium states of large drug-like molecules

Energetic ranking of molecular conformations

References

[1] **L. Medrano Sandonas** *et al., Chem. Sci.* **14**, 39, (2023). [2] J. Hoja, **L. Medrano Sandonas** *et al., Sci. Data* **8**, 43, (2021). [3] A. Fallani, L. Medrano Sandonas, and A. Tkatchenko. *Nat. Commun.* 15, 6061, (2024). [4] M. Stöhr, L. Medrano Sandonas, and A. Tkatchenko, J. Phys. Chem. Lett. 11, 6835, (2020). [5] **L. Medrano Sandonas** *et al., Sci. Data* **11**, 742, (2024).

Contact:

Dr. Leonardo Medrano Sandonas

leonardo.medrano@tu-dresden.de (+49) 351 46331424

