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Abstract—Olfaction is an evolutionary old sensory system, 
yet it provides sophisticated access to information about our 
surroundings. Inspired by the biological example, electronic 
noses (e-noses) in combination with efficient machine learning 
techniques aim to achieve similar performance and thus 
digitize the sense of smell. Despite the significant progress of e-
noses, their development remains challenging due to the 
complex layout design of sensor arrays with a multitude of 
receptor types or sensor materials, and the need for high 
working temperature. In the current work, we present the 
discriminative recognition of odors utilizing graphene single-
channel nanosensor-based electronic olfaction in conjunction 
with machine learning techniques. Multiple transient features 
extracted from the sensing response profile are employed to 
represent each odor and used as a fingerprint of odors. The 
developed electronic olfaction prototype exhibits excellent odor 
identification performance at room temperature, maximizing 
the obtained results from a single nanosensor. The developed 
platform may facilitate miniaturization of e-nose systems, 
digitization of odors, and distinction of volatile organic 
compounds (VOCs) in various emerging applications. 
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I. INTRODUCTION 
Human sensation relies on the sensory organs, such as 

eyes, ears, skin, tongue, and nose, which contribute to the 
sensory perceptions of vision, audition, somatosensory, 
gustation, and olfaction in the brain, respectively. Thanks to 
the surging development of artificial intelligence technology, 
there are numerous well-established technologies for 
measuring and reproducing some of the human senses, for 
instance, computer vision mimicking human sight, [1-3] 
machine audition mimicking human hearing, [4, 5] electronic 
skins mimicking human skins, [6-8] while it has proved more 
challenging to mimic the sense of taste and smell since they 
are chemical senses and responsive to chemical stimuli. [9] 
Nevertheless, olfaction, as one of the oldest senses in terms 
of evolution, is one of the most effective ways of interacting 
with the environment. In order to provide olfactory 
information and process odors artificially, machine olfaction 
gives rise to developments in biological modeling, sensor 
technology, and bioinspired technologies. In this scenario, 
machine olfaction or electronic nose (e-nose), refers to 
instrumental replication of the human olfactory sense, which 
comprises an array of electronic chemical sensors with 
partial specificity and an appropriate pattern-recognition 

system, capable of recognizing simple or complex odors, as 
defined by Gardner and Bartlett in 1993. [10] 

Herein, we present the development of a highly 
discriminative and ultrasensitive electronic olfaction (e-
olfaction) platform for the detection, discrimination, and 
identification of basic odor molecules, based on the use of a 
single channel nanosensor utilizing non-covalently 
functionalized graphene as a sensing element material. Four 
odors, including eucalyptol (Euca), 2-nonanone (2Nona), 
eugenol (Euge), and 2-phenylethanol (2Phe), which are 
generally employed in olfactory training among patients with 
olfactory loss, were investigated in this work. The 
performance of the developed e-olfaction towards individual 
odors is evaluated via machine learning algorithms 
incorporating 11 transient features extracted from the 
characteristic sensing response profile. The machine learning 
techniques involve data processing of sensing response, 
dimensionality reduction of features, as well as training 
classifier algorithms for odor prediction. The developed 
platform allows for odor recognition of a wide spectrum of 
molecules toward assisted olfaction for the population who 
exhibit olfactory disorders, as well as detection of volatile 
organic compounds (VOCs) in an extensive variety of 
domains, e.g., environmental monitoring, public security, 
smart farming, or disease diagnosis (e.g., lung cancer, 
COVID-19).   

II. RESULTS AND DISCUSSIONS 
In the presence of odor labels, the odor identification 

performance of our e-olfaction platform was investigated, 
corresponding to a supervised machine learning approach. 
This technique utilizes labeled datasets to train algorithms 
for the classification or the prediction of outcomes for 
unknown datasets accurately. The dataset (Euca, 2Nona, 
Euge, 2Phe, and reference gas), as well as their label were 
processed by the classifier model. We used Linear 
Discriminant Analysis (LDA) as an example, which is a 
linear transformation technique for dimensionality reduction 
and a well-known classifier. Odor classification results are 
illustrated in Figure 1 (a)-(b). The first three linear 
discriminants account for the total variance (LD1, LD2, LD3 
explain 82.42%, 14.36%, 2.67% of the variance, 
respectively). These results suggest that the four odor 
clusters as well as the reference cluster are separated very 
well without overlapping. With a 10-fold cross-validation 



approach, the average classification accuracy was evaluated 
with respect to various classifier models, as shown in Figure 
1 (c). For most classifier models, the prediction accuracy is 
very high, particularly, implemented with the LDA classifier, 
the accuracy reaches 97.5%. 

To evaluate the contribution of odor features to odor 
identification, the importance weight of these 11 feature 
parameters (a1, b1, c1, a2, b2, c2, S, kmax, kmin, amin, Area) were 
analyzed using the RandomForest classifier algorithm. As 
depicted in Figure 1 (d), it is observed that the most 
important 4 features (S, kmax, kmin, amin) parameters make up 
57.9% of total feature importance and the sole feature kmin 
contributes to 21.4% of total feature importance. These 
results indicate that the transient derivative features (S, kmax, 
kmin, amin) are discriminative for different odors.  

In conclusion, a biomimetic electronic olfaction platform 
using a graphene single-channel nanosensor has been 
proposed and its performance at room temperature has been 
investigated. Based on the preliminary results, the developed 
e-olfaction platform exhibit excellent odor identification 
performance. The developed e-olfaction device could be 
applied for the detection and discrimination of volatile 
organic compounds in widely emerging fields. 
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Figure 1. Odor identification performance of the e-olfaction platform. (a) Odor classification results by Linear 
Discriminant Analysis (LDA) classifier algorithm in 2D space (LD1 vs LD2). (b) Odor classification results by LDA 
classifier algorithm in 3D space (LD1 vs LD2 vs LD3). (c) Average prediction performance using 10-fold cross-validation 
on various algorithms. (d) Relative importance loading of 11 features on the odors identification. 


