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Abstract—Both ammonia (NH3) and phosphine (PH3) play a 
significant role in an extensive range of industrial processes, 
while they are harmful to human health even at very low 
concentration. So far, a variety of gas sensors have been 
developed to detect them in an industrial environment aimed to 
protect the health of workers at their work place. Among 
various types of gas sensors, chemiresistive type gas sensors 
have attracted considerable interest due to its characteristics, 
such as simple fabrication, high sensitivity, high reliability, etc. 
Nevertheless, there are still some limitations, such as, high 
power consumption resulted from high operating temperatures, 
and most sensors are solely dedicated to an individual gas 
monitoring. In this work, we present the development of highly 
sensitive and highly discriminative graphene-based gas sensors 
for gas detection and identification at room temperature. 
Graphene is exfoliated by a liquid phase approach and 
functionalized by copper phthalocyanine derivate (CuPc). 
Leveraging machine learning techniques, graphene-based gas 
sensors demonstrate an excellent gas identification 
performance towards NH3 and PH3 at an ultralow 
concentration (ppb level). This work could pave the path to 
design highly sensitive and smart gas sensors for a wide range 
of gases. 
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I. INTRODUCTION 
In the past decades, various types of gas sensors have 

been developed for both NH3 and PH3 detection, respectively. 
[1-4] Despite of the remarkable progress of gas sensing 
technology, the state-of-the-art gas sensors still exhibit some 
limitations. For instance, a high operating temperature is 
essential for most commercial gas sensors,. Most commercial 
gas sensors, such as metal-oxide-semiconductor (MOS) 
types, usually work at an high temperature range (e.g., 200–
500 °C ) due to that the thermal energy is indispensable to 
activate the adsorption of ionized oxygen species as well as 
to overcome the energy barrier of sensing reactions. [5] 
Furthermore, most gas sensors are generally dedicated to 
only one gas detection task under a pre-specified condition. 
For example, in order to monitor the NH3 gas leak in an 
industrial environment, a specific gas sensor devoted to NH3 
detection has to be deployed; to monitor the PH3 gas in the 
same workplace, a second gas sensor devoted to PH3 
detection is required. To the best of our knowledge, very few 
gas sensors are capable to discriminate or identify multiple 
industrial gases in the same environment.  

In this work, we present the development of copper 
phthalocyanine derivate functionalized graphene-based gas 
sensors. Each analyte gas is represented by a feature vector 
containing multiple transient features extracted from the 
sensing response profile of a single sensor after analyte 
exposure. This strategy is distinct from the conventional 
electronic nose (e-nose) technology, which typically employs 
steady features (e.g., maximum response value, S) from a 
sensor array consisting of multiple sensors. With supervised 
machine learning, the developed graphene nanosensor 
demonstrates an excellent gas identification performance 
towards NH3 and PH3 at an ultralow concentration (ppb 
level).  

II. RESULTS AND DISCUSSIONS 
Herein, we analyzed the sensing response of graphene-

based gas sensors towards industrial gases, NH3 and PH3. 
Following the sensing signal data acquisition, time-domain 
current data were converted to time-domain sensing response 
signals, as shown in Figure 1 (a). Each individual 
measurement contains two stages, the analyte gas exposure 
phase (15 mins) and the analyte gas flushing phase (10 mins). 
To classify each gas, multiple transient features are extracted 
from the sensing response profile to represent each gas, as 
schemed in Figure 1 (b).  

The typical procedure of feature extraction was as 
follows: firstly, the time-domain current signal was 
transformed into the time-domain resistance data according 
to Ohm’s law. Then, the resistance profile was split up into 
24 individual measurement profiles. Next, the fractional 
change of sensor resistance was derived and the sensing 
response profile was acquired. Subsequently, data 
normalization was carried out by the L2 norm algorithm, 
which aimed to compensate for sample-to-sample variations 
in concentration. Afterwards, both response profiles in the 
analyte gas exposure phase (t1-t2) and analyte gas flushing 
phase (t2-t3) were fitted with exponential functions. Three 
coefficients (a1, b1, c1) were obtained from the analyte gas 
exposure fitting curve and three coefficients (a2, b2, c2) were 
acquired from the analyte gas flushing curve, respectively. 
Meanwhile, calculations of the first derivative and the second 
derivative of the response profile as a function of time were 
conducted after fitting with a polynomial function, from 
which both the maximum value (kmax) and the minimum 
value (kmin) of the first derivative of the response profile were 
acquired, as well as the minimum value (amin) of the second 



derivative of the response profile was determined, 
respectively. Together, the transient response S in the whole 
exposure phase (t1-t2) was calculated, as well as the area 
under the whole response profile (t1-t3) was integrated. 
Finally, each analyte gas was represented by a feature vector 
containing 11 transient features, which consisted of 24 arrays 
of 11 features. 

All these feature data of analyte gases were then analyzed 
by unsupervised machine learning (Principal Component 
Analysis, PCA) model as well as a supervised machine 
learning (e.g., Linear Discriminant Analysis, LDA) model. 
As shown in Figure 1 (c), the first principal component 
explains 67.03% of the variance, while the second principal 
components explain 11.92%. Together, the first two principal 
components explain 78.95% of the variance. As can be seen 
in the scatter plot, NH3 clusters are located on the right side, 
PH3 clusters are located in the middle, and reference gas 
cluster is located on the left side. Obviously, PH3 clusters are 
close to the reference gas cluster, while NH3 clusters are far 
away from the reference gas cluster, suggesting that the NH3 
analyte induces a more discriminative signal than PH3 upon 
interacting with functionalized graphene on the sensor. 
Employing supervised machining learning models, the 
classification results of both NH3 and PH3 from the reference 
gas (pure N2) were achieved, for instance, using the LDA 
classifier, as depicted in Figure 1 (d). In contrast to the PCA 
algorithm, the LDA algorithm attempts to find a feature 
subspace that optimizes class separability. As it is shown in 
Figure 1 (d), NH3 forms an isolated cluster while the PH3 
cluster approaches the reference gas cluster at 500 ppb 
concentration. In order to evaluate the prediction accuracy of 
the supervised machine learning model, the hold-out cross-

validation method was employed, in which 70% dataset was 
used as training data and the remaining 30% was used as test 
data. The results show the prediction accuracy is high. 

From these preliminary results, it can be concluded that 
the analyte gas can be represented by a feature vector 
containing multiple transient features. In combination with 
supervised machine learning, analyte gases can be 
discriminated and identified with excellent performance, 
such as high accuracy, sensitivity and specificity for NH3 and 
PH3  at ppb concentration level. This work may pave a path 
to design highly selective, highly sensitive, miniaturized, 
intelligent gas sensors for a wide spectrum of industrial gases. 
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Figure 1. (a) Typical sensing response profile of graphene-based gas sensor towards 500 ppb analyte gases under cyclic 
testing. A complete test is composed of 24 repetitions test. (b) Schematic of sensing response profile S(t) of a single 
measurement, consisting of analyte exposure phase (t1-t2, 15 min) and analyte flushing phase (t2-t3, 10 min). The feature 
vector representing each analyte gas consists of 11 parameters, including, a1, b1, c1, a2, b2, c2, S, kmax, kmin, amin, area. (c) 
PCA score plot of analyte gases at 500 ppb concentration. (d) LDA score plot of analytes gases at 500 ppb concentration. 
Adapted with permission from [6]. 


